题目

链接

有n只青蛙,有m块石头,编号为0~m-1,第i只青蛙每次可以跳$a_i$, 刚开始都在0,问,青蛙总共可以跳到的石头之和为多少。其中$t≤20$,$1≤n≤10^4$,$1≤m≤10^9$,$1≤a_i≤10^9$.

分析

根据裴蜀定理知,对于一个有n个点的环,每个循环节的长度为n/gcd(n, k),k为每次走的步数。所以青蛙可以达到的石头编号肯定是$gcd(m,a_i)$的倍数,相当于真正步长为$gcd(m,a_i)$.

当然要容斥一下,不就是奇加偶减吗,枚举所有的项有$2^n$个($n$是gcd的个数),还要加剪枝,如果当前的lcm是gcd[i]的倍数,那么可以不继续容斥下去(也就是对答案没有贡献).

 #include<cstdio>
#include<algorithm>
using namespace std; typedef long long ll;
const int maxn = + ;
ll n, m;
ll fac[maxn], cnt, sum; ll gcd(ll a, ll b)
{
return b == ? a : gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
return a * b / gcd(a, b);
} void dfs(int pos, ll tlcm, int sz)
{
//printf("pos:%d tlcm:%lld sz:%d\n", pos, tlcm, sz);
if(tlcm >= m) return;
if(pos == cnt)
{
if(sz == ) return;
if(sz & )
{
ll tmp = (m-) / tlcm;
sum += tmp * (tmp+) * tlcm / ; //o tlcm 2*tlcm... tmp*tlcm 奇加偶减
}
else
{
ll tmp = (m-) / tlcm;
sum -= tmp * (tmp+) * tlcm / ; //o tlcm 2*tlcm... tmp*tlcm
}
return;
}
if(tlcm % fac[pos] == ) return;
dfs(pos+, tlcm, sz);
dfs(pos+, lcm(tlcm, fac[pos]), sz+);
} int main()
{
int T, kase = ;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld", &n, &m);
bool flag= false;
for(int i = ;i < n;i++)
{
ll tmp;
scanf("%lld", &tmp);
fac[i] = gcd(tmp, m);
if(fac[i] == ) flag = true;
}
printf("Case #%d: ", ++kase);
if(flag)
{
printf("%lld\n", (m-) * m / );
}
else
{
sort(fac, fac+n);
cnt = unique(fac, fac+n) - fac;
sum = ;
dfs(, , );
printf("%lld\n", sum);
}
}
return ;
}

网上更多的解法是分析m的因子,求贡献。(然而没有看懂)

参考链接:http://www.acmtime.com/?p=864

HDU5514——容斥原理&&gcd的更多相关文章

  1. hdu (欧拉函数+容斥原理) GCD

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/ar ...

  2. [CQOI2014]数三角形 组合数 + 容斥 + gcd

    推导过程 : 组合数+容斥原理+gcd 正确做法是暴力的一种优化,ans=所有情况 - 平行坐标轴的三点共线 - 斜线三点共线 如果快速求斜线三点共线: 首先要知道一个结论,对于点(a,b) (x,y ...

  3. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU1695 GCD (欧拉函数+容斥原理)

    F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  5. HDU 1695 GCD (容斥原理+欧拉函数)

    题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y) ...

  6. UVa 1393 (容斥原理、GCD) Highways

    题意: 给出一个n行m列的点阵,求共有多少条非水平非竖直线至少经过其中两点. 分析: 首先说紫书上的思路,编程较简单且容易理解.由于对称性,所以只统计“\”这种线型的,最后乘2即是答案. 枚举斜线包围 ...

  7. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  8. HDU 1695 GCD#容斥原理

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 翻译题目:给五个数a,b,c,d,k,其中恒a=c=1,x∈[a,b],y∈[c,d],求有多少组(x,y ...

  9. GCD(关于容斥原理)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

随机推荐

  1. 《C和指针》读书笔记

    1. 三字母词 三字母词即用三个字符合起来表示另一个字符,它可以使C环境在某些缺少一些必需字符的字符集上实现. ??( [ ??< { ??= # ??) ] ??> } ??/ \ ?? ...

  2. Codeforces Round #590 (Div. 3)补题

    要想上2000分,先刷几百道2000+的题再说 ---某神 题目 E F 赛时是否尝试 × × tag math bitmask 难度 2000 2400 状态 ∅ √ 解 E 待定 F 传送门 第一 ...

  3. P1040 加分二叉树(区间DP)

    (点击此处查看原题) 解题思路 题目已经给出了树的中序遍历,因此我的想法是利用中序遍历的特点:若某子树的根结点为k,那么k之前的结点组成这一子树的左子树,k之后的结点组成这一子树的右子树,可以通过不断 ...

  4. 关于centOS安装配置xampp那点事

    1.到官网下载centOS对应版本的xampp,应该是以tar.gz为后缀的 2.tar -zxf 下载的包 3.mv lampp /opt 4.service mysqld stop因xampp里自 ...

  5. Codeforces 1097E. Egor and an RPG game

    传送门 首先考虑怎么算 $f(n)$ (就是题目里面那个 $f(n)$) 发现可以构造一组序列大概长这样: ${1,3,2,6,5,4,10,9,8,7,15,14,13,12,11,...,n(n+ ...

  6. Spring实战(四)Spring高级装配中的bean profile

    profile的原意为轮廓.剖面等,软件开发中可以译为“配置”. 在3.1版本中,Spring引入了bean profile的功能.要使用profile,首先要将所有不同的bean定义整理到一个或多个 ...

  7. windows下安装mongoDB(zip版)

    windows下安装mongoDB(zip版) 下面说明如何在win10下用zip包安装好mongoDB数据库 首先要先从网上下载mongoDB的zip包 http://dl.mongodb.org/ ...

  8. 利用element-ui封装地址输入的组件

    我们前端做项目时,难免会遇到地址输入,多数情况下,我们都是提供一个省市三级联动,加上具体地址输入的Input输入框给用户,用以获取用户需要输入的真实地址.在需要对用户输入的数据进行校验的时候,我们会单 ...

  9. 怎样设置Cookie

    因为 Cookie 是服务器保存在浏览器中的一小段信息, 因此这个设置应当是服务器发起的, 设置方法是在Response Header中添加: Set-Cookie字段, 值是多个键值对. 如下: / ...

  10. C# 连接 Socks5 代理

    public class Socks5ProxyHelp { private Socks5ProxyHelp() { } public static string[] errorMsgs = { &q ...