ETL

ETL is an abbreviation of Extract, Transform and Load. In this process, an ETL tool extracts the data from different RDBMS source systems then transforms the data like applying calculations, concatenations, etc. and then load the data into the Data Warehouse system.

In ETL data is flows from the source to the target. In ETL process transformation engine takes care of any data changes.

ELT

ELT is a different method of looking at the tool approach to data movement. Instead of transforming the data before it's written, ELT lets the target system to do the transformation. The data first copied to the target and then transformed in place.

ELT usually used with no-Sql databases like Hadoop cluster, data appliance or cloud installation.

Data Warehouse vs Data Lake

ETL对应的是Data Warehouse,而ELT对应Data Lake,那什么是Data Lake?

A data lake is a system or repository of data stored in its natural format, usually object blobs or files. A data lake is usually a single store of all enterprise data including raw copies of source system data and transformed data used for tasks such as reporting, visualization, analytics and machine learning. A data lake can include structured data from relational databases (rows and columns), semi-structured data (CSV, logs, XML, JSON), unstructured data (emails, documents, PDFs) and binary data (images, audio, video).

Pentaho CTO James Dixon has generally been credited with coining the term “data lake”. He describes a data mart (a subset of a data warehouse) as akin to a bottle of water…”cleansed, packaged and structured for easy consumption” while a data lake is more like a body of water in its natural state. Data flows from the streams (the source systems) to the lake. Users have access to the lake to examine, take samples or dive in.

参考:
https://www.guru99.com/etl-vs-elt.html
https://aws.amazon.com/cn/big-data/datalakes-and-analytics/what-is-a-data-lake/
https://www.blue-granite.com/blog/bid/402596/top-five-differences-between-data-lakes-and-data-warehouses
https://www.forbes.com/sites/bernardmarr/2018/08/27/what-is-a-data-lake-a-super-simple-explanation-for-anyone/#672125e776e0
https://blog.panoply.io/etl-vs-elt-the-difference-is-in-the-how
https://www.xplenty.com/blog/etl-vs-elt/

【原创】大数据基础之ETL vs ELT or DataWarehouse vs DataLake的更多相关文章

  1. 【原创】大数据基础之Zookeeper(2)源代码解析

    核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...

  2. 【原创】大数据基础之Impala(1)简介、安装、使用

    impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic datab ...

  3. 【原创】大数据基础之词频统计Word Count

    对文件进行词频统计,是一个大数据领域的hello word级别的应用,来看下实现有多简单: 1 Linux单机处理 egrep -o "\b[[:alpha:]]+\b" test ...

  4. 【原创】大数据基础之Benchmark(2)TPC-DS

    tpc 官方:http://www.tpc.org/ 一 简介 The TPC is a non-profit corporation founded to define transaction pr ...

  5. Kettle学习系列之数据仓库、数据整合、ETL、ELT和EII之间的区别?

    不多说,直接上干货! 在数据仓库领域里,的一个重要概念就是数据整合(data intergration).数据整合它就是把不同数据库中的数据整合到一起,对外提供统一的数据视图. 数据整合最典型的案例就 ...

  6. 大数据基础知识:分布式计算、服务器集群[zz]

    大数据中的数据量非常巨大,达到了PB级别.而且这庞大的数据之中,不仅仅包括结构化数据(如数字.符号等数据),还包括非结构化数据(如文本.图像.声音.视频等数据).这使得大数据的存储,管理和处理很难利用 ...

  7. 大数据基础知识问答----spark篇,大数据生态圈

    Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...

  8. 大数据基础知识问答----hadoop篇

    handoop相关知识点 1.Hadoop是什么? Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速 ...

  9. hadoop大数据基础框架技术详解

    一.什么是大数据 进入本世纪以来,尤其是2010年之后,随着互联网特别是移动互联网的发展,数据的增长呈爆炸趋势,已经很难估计全世界的电子设备中存储的数据到底有多少,描述数据系统的数据量的计量单位从MB ...

随机推荐

  1. QList和QVector等容器的区别

    QList和QVector等容器的区别. 1.大多数情况下可以用QList.像prepend()和insert()这种操作,通常QList比QVector快的多.这是因为QList是基于index标签 ...

  2. YOLO: You Only Look Once论文阅读摘要

    论文链接: https://arxiv.org/pdf/1506.02640.pdf 代码下载: https://github.com/gliese581gg/YOLO_tensorflow Abst ...

  3. PCL中有哪些可用的PointT类型(1)

    博客转载自:http://www.pclcn.org/study/shownews.php?lang=cn&id=266 为了涵盖能想到的所有可能的情况,PCL中定义了大量的point类型.下 ...

  4. Qt编写自定义控件14-环形进度条

    前言 环形进度条,用来展示当前进度,为了满足大屏UI的需要特意定制,以前有个叫圆环进度条,不能满足项目需要,只能重新定做,以前的进度间距不能自适应分辨率,而且当前进度对应的反的进度不能单独设置颜色,即 ...

  5. python 实例方法、类方法和静态方法

    #!/usr/bin/env python3.6 #-*- coding:utf-8 -*- # class Person(object): city = 'Beijing' def __init__ ...

  6. GBK格式字符串右补空格

    public class Test2 {   public static void main(String[] s) throws IOException {   List<User> l ...

  7. 用python做线性规划

    scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simplex', ...

  8. Redis 集群部署

    一.下载所需软件包 redis wget http://download.redis.io/releases/redis-4.0.6.tar.gz ruby wget https://cache.ru ...

  9. 如何写resultful接口

    一.协议 API与客户端用户的通信协议,总是使用HTTPS协议,以确保交互数据的传输安全. 二.域名 应该尽量将API部署在专用域名之下: https://api.example.com 如果确定AP ...

  10. 测试ssh转发

    端口转发提供: 1.加密 SSH Client 端至 SSH Server 端之间的通讯数据. 2.突破防火墙的限制完成一些之前无法建立的 TCP 连接. 但是只能转发tcp连接,想要转发UDP,需要 ...