hdu2516-取石子游戏 (斐波那契博弈)【博弈 二分查找】
http://acm.hdu.edu.cn/showproblem.php?pid=2516
取石子游戏
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3248 Accepted Submission(s): 1897
参看Sample Output.
题解:找规律吧。经分析,可以判断必败态有2,3,5,8,13,21... 可以发现,必败态是一个斐波那契数列。然后,如果n为斐波那契数列元素,则必败;否则,必胜。
下面看下数学证明:
就像“Wythoff博弈”需要“Beatty定理”来帮忙一样,这里需要借助“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。
先看看FIB数列的必败证明:
1、当i=2时,先手只能取1颗,显然必败,结论成立。
2、假设当i<=k时,结论成立。
则当i=k+1时,f[i] = f[k]+f[k-1]。
则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。
(一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为f[k] < 2*f[k-1])
对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。
如果先手第一次取的石子数y>=f[k-1]/3,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时x=f[k-1]-y,则x<=2/3*f[k-1]。
我们来比较一下2/3*f[k-1]与1/2*f[k]的大小。即4*f[k-1]与3*f[k]的大小,由数学归纳法不难得出,后者大。
所以我们得到,x<1/2*f[k]。
即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜。
即i=k+1时,结论依然成立。
对于不是FIB数,首先进行分解。
分解的时候,要取尽量大的Fibonacci数。
比如分解85:85在55和89之间,于是可以写成85=55+30,然后继续分解30,30在21和34之间,所以可以写成30=21+9,
依此类推,最后分解成85=55+21+8+1。
则我们可以把n写成 n = f[a1]+f[a2]+……+f[ap]。(a1>a2>……>ap)
我们令先手先取完f[ap],即最小的这一堆。由于各个f之间不连续,则a(p-1) > ap + 1,则有f[a(p-1)] > 2*f[ap]。即后手只能取f[a(p-1)]这一堆,且不能一次取完。
此时后手相当于面临这个子游戏(只有f[a(p-1)]这一堆石子,且后手先取)的必败态,即先手一定可以取到这一堆的最后一颗石子。
同理可知,对于以后的每一堆,先手都可以取到这一堆的最后一颗石子,从而获得游戏的胜利。
代码:
#include <iostream>
#include <cstdio> using namespace std; int f[],n; bool find(); int main(){
f[]=;
f[]=;
for(int i=;i<;i++){//44是测试测出来的
f[i]=f[i-]+f[i-];
}
while(scanf("%d",&n),n){
if(find()) puts("Second win");
else puts("First win");
}
return ;
}
bool find(){
int l=,r=,mid;
while(l<=r){
mid=(l+r)>>;
if(n==f[mid]) return true;
else if(n<f[mid]) r=mid-;
else l=mid+;
}
return false;
}
hdu2516-取石子游戏 (斐波那契博弈)【博弈 二分查找】的更多相关文章
- {HDU}{2516}{取石子游戏}{斐波那契博弈}
题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐 ...
- HDU 2516 取石子游戏 斐波纳契博弈
斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍) ...
- 取石子游戏 HDU 1527 博弈论 威佐夫博弈
取石子游戏 HDU 1527 博弈论 威佐夫博弈 题意 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两 ...
- 洛谷 P2252 [SHOI2002]取石子游戏|【模板】威佐夫博弈
链接: P2252 [SHOI2002]取石子游戏|[模板]威佐夫博弈 前言: 第一眼大水题,第二眼努力思考,第 N 眼我是大水逼. 题意: 不看题目标题都应该能看出来是取石子类的博弈论. 有两堆石子 ...
- HDU2516 - 取石子游戏【斐波那契博弈】
基本描述 有一堆个数为n的石子,游戏双方轮流取石子,满足: 先手不能再第一次把所有石子取完: 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间,包括1和对手取的石子数的2倍. 取最后石子的人 ...
- ***1133. Fibonacci Sequence(斐波那契数列,二分,数论)
1133. Fibonacci Sequence Time limit: 1.0 secondMemory limit: 64 MB is an infinite sequence of intege ...
- HDU 2516 (Fabonacci Nim) 取石子游戏
这道题的结论就是,石子的个数为斐波那契数列某一项的时候,先手必败:否则,先手必胜. 结论很简单,但是证明却不是特别容易.找了好几篇博客,发现不一样的也就两篇,但是这两篇给的证明感觉证得不清不楚的,没看 ...
- 斐波那契堆(一)之 图文解析 和 C语言的实现
概要 本章介绍斐波那契堆.和以往一样,本文会先对斐波那契堆的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了 ...
- UVA - 11582 Colossal Fibonacci Numbers! (巨大的斐波那契数!)
题意:输入两个非负整数a.b和正整数n(0<=a,b<264,1<=n<=1000),你的任务是计算f(ab)除以n的余数,f(0) = 0, f(1) = 1,且对于所有非负 ...
- 【洛谷2252&HDU1527】取石子游戏(博弈论)
题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...
随机推荐
- 申请apple开发人员账号的波折
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/xiebaochun/article/details/37578395 是的.po主要搞ios开发了, ...
- [LeetCode系列]子集枚举问题[无重复元素]
给定一组数(未排序), 求它们的所有组合可能. 如给定{1 2 3}, 返回: [ [] [1] [2] [3] [1 2] [1 3] [2 3] [1 2 3] ] 算法思路: 对数组排序, 从小 ...
- Loadrunner录制脚本之浏览器
Loadrunner录制脚本之浏览器 用Loadrunner录制脚本,尤其现在的IE浏览器版本升级较快,脚本的录制有时候还是需要集RP.Luck的,当然,Loadrunner对于IE的支持算最好的了, ...
- ThinkPHP 分页功能梳理
最近在开发一个项目,使用了国内流行的ThinkPHP框架,我之前没怎么用过这个框架,也是临时抱佛脚,用的不怎么样?可能理解不是很深刻,如果有说的不对或不正确的地方,请大家多包涵,多指教. ThinkP ...
- 在Mac和win7上分别安装了docker后,发现原来的vagrant都启动不了了
在Mac和win7上分别安装了docker后,发现原来的vagrant都启动不了了 liugx@liugx vagrant$ vagrant up /opt/vagrant/embedded/gems ...
- java代码----FileInputStream 和File
总结:程序运行后,发现新建的两个文件里的东西突然i清空了.以为是程序出错了. 然后慌了,之后我再运行时,发现可以了.是电脑的问题吧 一如既往的打扰他,只因为他优秀 package com.a.b; i ...
- line 1: syntax error: unexpected word (expecting ")")
编译出来的程序在arm平台上运行时,出现下面的错误. / # wpa_supplicant -B -c/etc/wpa_wpa2.conf -iwlan0 /bin/wpa_supplicant: ...
- Mybatis扩展
分页插件PageHelper 其实Mybstis内部有实现逻辑分页的功能,但是较为麻烦和难用.这里记录一个分页插件PageHelper的使用,我们可以在它的github地址https://github ...
- 【BZOJ】1823: [JSOI2010]满汉全席(2-sat)
题目 传送门:QWQ 分析 2-sat模板(然而辣鸡如我还是调了好久) 代码 //bzoj 1823 2-sat #include <bits/stdc++.h> using namesp ...
- wamp-php 集成环境的基础配置
域名访问设置(本地局域网) 用记事本打开 127.0.0.1是本地回环地址 配置完后 通过在本地浏览器输入www.0705.com就可以访问本地站点了 Wamp集成环境多站点配置 配置条件: 一个服务 ...