【题意】给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10。

【算法】杜教筛

【题解】就因为写了这个非常规写法,我折腾了3天……

$$ans=\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)$$

$$g(n)=n*\sum_{i=1}^{n}\frac{i}{(n,i)}$$

那么

$$ans(n)=2*g(n)-\sum_{i=1}^{n}i$$

枚举gcd,化简g(n)。

$$g(n)=n*\sum_{d|n}1/d\sum_{i=1}^{n}i*[(n,i)=d]$$

令i=i/d

$$g(n)=n*\sum_{d|n}1/d\sum_{i=1}^{n/d}id*[(n/d,i)=1]$$

$$g(n)=n*\sum_{d|n}\sum_{i=1}^{n/d}i*[(n/d,i)=1]$$

由于

$$\sum_{i=1}^{n}[(n,i)=1]*i=\frac{n*\varphi(n)+[n==1]}{2}$$

所以代入,得

$$g(n)=n*\sum_{d|n}\frac{d*\varphi(d)+[d==1]}{2}$$

这里需要注意取整的问题,当d>1时d*φ(d)一定是偶数,当d=1时d*φ(d)=1就必须结合[d==1],于是可以化简成下面的形式。

$$g(n)=\frac{1}{2}n(1+\sum_{d|n}d*\varphi(d))$$

$$g(n)=\frac{1}{2}(n+n*\sum_{d|n}d*\varphi(d))$$

将上式代入ans,得

$$ans=2*\sum_{i=1}^{n}\frac{1}{2}(i+i*\sum_{d|i}d*\varphi(d)))-\sum_{i=1}^{n}i$$

$$ans=\sum_{i=1}^{n}i*\sum_{d|i}d*\varphi(d)$$

$$f(n)=n*\sum_{d|n}d*\varphi(d)$$

那么

$$ans=F(n)=\sum_{i=1}^{n}f(n)$$

★呼,经过上面一系列的化简,我们终于来到了杜教筛——求f(n)的前缀和。

$$f(n)=n*\sum_{d|n}d*\varphi(d)$$

将f表示成狄利克雷卷积的形式,根据点积的卷积分配律(乱起的名字)。

$$f=id \cdot (1*(id \cdot \varphi))=id*(id^2 \cdot \varphi)$$

发现其中有id^2的形式,我们知道同阶幂函数卷积有奇效www。(实际上应该是相同完全积性函数卷积有奇效)

$$g=id^2$$

$$f*g=(id^2 \cdot \varphi)*id*id^2=[(id^2 \cdot \varphi)*id^2]*id$$

双重卷积非常麻烦,考虑先化简方括号内的卷积

$$([(id^2 \cdot \varphi)*id^2])(i)=\sum_{d|n}d^2*\varphi(d)*\frac{n^2}{d^2}=n^2\sum_{d|n}\varphi(d)=n^3$$

成功化简!我们可以把f*g表示出来了!

$$(f*g)(i)=\sum_{d|n}d^3*\frac{n}{d}=n*\sum_{d|n}d^2$$

jiry_2在她的博客中表示这个柿子的前缀和是非常好求的。

我:???

假设h=f*g,那么

$$H(i)=\sum_{i=1}^{n}i*\sum_{d|i}d^2=\sum_{i=1}^{n}i^2\sum_{d=1}^{n/i}d*i=\sum_{i=1}^{n}i^3*\frac{\frac{n}{i}*(\frac{n}{i}+1)}{2}$$

然后就可以进行分块取值优化了,注意G和H的求解复杂度为O(1)~O(√n)对杜教筛的总复杂度都没有影响。

最终杜教筛的形式是

$$F(n)=H(n)-\sum_{i=2}^{n}i^2*F(\frac{n}{i})$$

#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
const int MOD=1e9+,preN=,v=(MOD+)/;
int N,f[preN+],phi[preN+],e[preN+],a[],prime[],tot;
int A(int n){return n%MOD*(n%MOD+)%MOD*v%MOD;}
int B(int n){return n%MOD*(n%MOD+)%MOD*(*n%MOD+)%MOD*((MOD+)/)%MOD;}
int K(int x){return x*x%MOD;}
int C(int n){return K(A(n));}
int query(int n){
int pos=,ans=;
for(int i=;i<=n;i=pos+){
pos=n/(n/i);
ans=(ans+(C(pos)-C(i-)+MOD)*A(n/i)%MOD)%MOD;
}
return ans;
}
int solve(int n){
if(n<=preN)return f[n];
if(~a[N/n])return a[N/n];
int ans=query(n);
int pos=;
for(int i=;i<=n;i=pos+){
pos=n/(n/i);
ans=(ans-(B(pos)-B(i-)+MOD)*solve(n/i)%MOD+MOD)%MOD;
}
return a[N/n]=ans;
}
#undef int
int main(){
#define int long long
scanf("%lld",&N);
phi[]=;f[]=;e[]=;
for(int i=;i<=preN;i++){
if(!e[i]){
phi[prime[++tot]=i]=i-;
e[i]=i;
f[i]=(i*phi[i]+)%MOD;
}
for(int j=;j<=tot&&i*prime[j]<=preN;j++){
int k=i*prime[j];
if(i%prime[j]==){
e[k]=e[i]*prime[j];
phi[k]=phi[i]*prime[j];
f[k]=(f[i]+f[i/e[i]]*phi[e[k]]%MOD*e[k]%MOD)%MOD;
break;
}
e[k]=prime[j];
phi[k]=phi[i]*(prime[j]-);
f[k]=f[i]*f[prime[j]]%MOD;
}
}
for(int i=;i<=preN;i++)f[i]=(f[i-]+f[i]*i%MOD)%MOD;
memset(a,-,sizeof(a));
printf("%lld",solve(N));
return ;
}

1.F(n)的预处理:在i%prime[j]时,f[i*prime[j]]=f[i]+f[i/e[i]]*φ(e[i]*prime[j])*(e[i]*prime[j]),其中e[i]是 i 的所有最小素因子乘积(p1^k1)。

2. 1~3次幂前缀和

$$\sum_{i=1}^{n}i=\frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n}i^3=(\frac{n(n+1)}{2})^2$$

3.x的逆元是(MOD+1)/x,如果这是个整数。

4.全程long long的话,define比较好。而且输入的n是long long的话,n*n会爆long long。

【另一种写法】

$$ans=\sum_{i=1}^{n}\sum_{i=1}^{n}\frac{i*j}{(i,j)}$$

直接枚举gcd值

$$ans=\sum_{d=1}^{n}1/d\sum_{i=1}^{n/d}\sum_{i=1}^{n/d}d^2*i*j*[(i,j)=1]$$

$$ans=\sum_{d=1}^{n}d\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}i*j*[(i,j)=1]$$

这里看到[(i,j)=1]很容易想到莫比乌斯反演,但是这个问题如果反演会变得相当复杂,应该留到后面用n*φ(n)/2化简。

从上式已经可以看出分块取值优化的形式了。

$$s(n)=\sum_{i=1}^{n}\sum_{j=1}^{n}i*j*[(i,j)=1]$$

那么

$$ans=\sum_{d=1}^{n}d*s(n/d)$$

为了将s(n)表示成前缀和的形式,将矩形转化为上三角。

$$s(n)=2*(\sum_{i=1}^{n}\sum_{j=1}^{i}i*j*[(i,j)=1])-1$$

$$s(n)=2*P(n)-1$$

$$p(n)=n*\sum_{i=1}^{n}i*[(n,i)=1]$$

然后就可以转化了

$$p(n)=n*\frac{n*\varphi(n)+[n==1]}{2}=\frac{1}{2}(n^2\varphi(n)+n)$$

$$f(n)=n^2\varphi(n)$$

那么s(n)可以表示为

$$s(n)=F(n)+\frac{n(n+1)}{2}-1$$

然后我们就可以用杜教筛求解f(n)的前缀和。

$$f=id^2 \cdot \varphi$$

$$g=id^2$$

$$f*g=id^3$$

因为分块和杜教筛都是求n/i,所以复杂度并列,最终O(n^2/3)。

【51nod】1238 最小公倍数之和 V3 杜教筛的更多相关文章

  1. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

  2. [51Nod 1238] 最小公倍数之和 (恶心杜教筛)

    题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑N​j=1∑N​lcm(i,j) 2<=N<=10102<=N ...

  3. 51 Nod 1238 最小公倍数之和 V3 杜教筛

    题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}l ...

  4. [51Nod1238]最小公倍数之和 V3[杜教筛]

    题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...

  5. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  6. 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】

    首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...

  7. 51Nod 1238 - 最小公倍数之和 V3(毒瘤数学+杜教筛)

    题目 戳这里 推导 ∑i=1n∑j=1nlcm(i,j)~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)   ∑i=1n​∑j=1n​lcm(i,j) =∑i=1n∑j= ...

  8. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  9. 51nod 237 最大公约数之和 V3 杜教筛

    Code: #include <bits/stdc++.h> #include <tr1/unordered_map> #define setIO(s) freopen(s&q ...

随机推荐

  1. PHP中对象的传值方式

    对象的传值方式: 为什么对于对象,值传递和引用传递,这个情况下,他们似乎没有区别??? 这要从对象的数据的存储方式来理解: $o1 = new C1(); //这里创建一个对象o1,其存储结果如图所示 ...

  2. ETL技术( Extract-Transform-Load) 数据仓库技术-比如kettle

    每次面试,互联网的面试官,经常问我有没有用过ETL,每次我都懵逼,说没用过,觉得是多么高大上的东东,数据仓储 今天查了一下,我晕,自己天天用的Kettle就是最典型的ETL, 可以实现不同数据库之间的 ...

  3. centOS 中安装 Redis

    之前安装过了 jdk,mysql,tomcat,这次安装 Redis,最开始是将 redis 安装在 windows 下 run 的,这时安装在 Linux 里面试试. 1 . 首先得安装 c环境,用 ...

  4. python的N个小功能(文本字段对应数值,经纬度计算距离,两个时间点计算时间间隔)

    案例1 >>> import pandas as pd >>> df=pd.DataFrame({'A':[1,2,3],'B':[1,2,3],'C':[1,2, ...

  5. 下载文件 通过a 标签 请求某个servlet进行下载的

    下载文件 通过a 标签 请求某个servlet进行下载的

  6. iOS OC语言原生开发的IM模块--RChat

    iOS OC语言原生开发的IM模块,用于项目中需要原生开发IM的情况,具备发送文字.表情.语音.图片.视频等完整功能,包含图片预览视频播放等功能,此项目将会长期更新如有问题可以提出,我的邮箱:fshm ...

  7. BZOJ 1975 魔法猪学院(A*求K短路)

    显然每次贪心的走最少消耗的路径即可.那么也就是找出最短路,次短路,,,K短路之后消耗E的能量的最多的路径条数. 也就是裸的A*算法. #include <bits/stdc++.h> us ...

  8. 20135239益西拉姆 Linux内核分析 汇编一个简单的c程序并分析其指令过程

    益西拉姆+<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 第一周linux内核分析 学习笔记 一.计算机 ...

  9. 常用Actoin算子 与 内存管理 、共享变量、内存机制

    一.常用Actoin算子 (reduce .collect .count .take .saveAsTextFile . countByKey .foreach ) collect:从集群中将所有的计 ...

  10. 网络协议之mDNS20170217

    DNS(Domain Name System,域名系统)因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串.通过主机名,最终得 ...