POJ2043 Area of Polygons
| Time Limit: 3000MS | Memory Limit: 30000K | |
| Total Submissions: 1020 | Accepted: 407 |
Description
Your job is to help Yoko, not good either at math or at computer programming, get her homework done. A polygon is given by listing the coordinates of its vertices. Your program should approximate its area by counting the number of unit squares (whose vertices are also grid points) intersecting the polygon. Precisely, a unit square "intersects the polygon" if and only if the intersection of the two has non-zero area. In the figure below, dashed horizontal and vertical lines are grid lines, and solid lines are edges of the polygon. Shaded unit squares are considered intersecting the polygon. Your program should output 55 for this polygon (as you see, the number of shaded unit squares is 55).

Input
A description of a polygon begins with a line containing a single integer, m (>= 3), that gives the number of its vertices. It is followed by m lines, each containing two integers x and y, the coordinates of a vertex. The x and y are separated by a single space. The i-th of these m lines gives the coordinates of the i-th vertex (i = 1,...,m). For each i = 1,...,m-1, the i-th vertex and the (i+1)-th vertex are connected by an edge. The m-th vertex and the first vertex are also connected by an edge (i.e., the curve is closed). Edges intersect only at vertices. No three edges share a single vertex (i.e., the curve is simple). The number of polygons is no more than 100. For each polygon, the number of vertices (m) is no more than 100. All coordinates x and y satisfy -2000 <= x <= 2000 and -2000 <= y <= 2000.
Output
Sample Input
4
5 -3
1 0
1 7
-7 -1
3
5 5
18 5
5 10
3
-5 -5
-5 -10
-18 -10
5
0 0
20 2
11 1
21 2
2 0
0
Sample Output
55
41
41
23
Source
数学问题 几何 扫描线
看到题面心惊胆战,看到数据范围发现就是个暴力扫描线。
维护一条扫描线从x轴最左边往最右边移动,对于每一列记录原图形上线段和扫描线的交点纵坐标。
将交点坐标用floor和ceil取整,就可以愉快地做线段覆盖了。
注意计算交点时候,要先乘后除。先除后乘会被卡精度。
日常犯蠢WA一串,身败名裂。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct point{
double x,y;
point(){}
point(double _x,double _y):x(_x),y(_y){}
}p[mxn];
struct Seg{point s,t;}L[mxn];
double F(const point &a,const point &b,double x){
return a.y+(b.y-a.y)*(x-a.x)/(b.x-a.x);
}
struct Line{
double L,R;
bool operator < (const Line &b)const{
return (L==b.L && R<b.R) || (L<b.L);
}
}s[mxn<<];
int sct=;
int ans=;
void solve(){
sort(s+,s+sct+);
int last=-1e10;
for(int i=;i<sct;i+=){
int x=floor(min(min(s[i].L,s[i+].L),min(s[i].R,s[i+].R)));
int y=ceil(max(max(s[i].L,s[i+].L),max(s[i].R,s[i+].R)));
if(x>=last)ans+=y-x;
else if(y>last)ans+=y-last;
last=y;
}
return;
}
int n;
int main(){
int i,j;
while(scanf("%d",&n)!=EOF && n){
ans=;
int sx=1e8,mx=-1e8;
for(i=;i<=n;i++){
p[i].x=read();p[i].y=read();
sx=min(sx,(int)p[i].x);mx=max(mx,(int)p[i].x);
}
p[n+]=p[];
for(i=;i<=n;i++){//segment
if(p[i].x<p[i+].x){L[i].s=p[i];L[i].t=p[i+];}
else{L[i].s=p[i+];L[i].t=p[i];}
}
for(i=sx;i<mx;i++){
sct=;
for(j=;j<=n;j++){
if(L[j].s.x<=i && L[j].t.x>=i+){
++sct;
s[sct].L=F(L[j].s,L[j].t,i);
s[sct].R=F(L[j].s,L[j].t,i+);
if(s[sct].L>s[sct].R)swap(s[sct].L,s[sct].R);
}
}
solve();
}
printf("%d\n",ans);
}
return ;
}
POJ2043 Area of Polygons的更多相关文章
- 【POJ】2043.Area of Polygons
原题戳这里 开始一小段时间的POJ计算几何练习计划(估计很快就会被恶心回去) 题解 用一条平行于y轴的扫描线,计算两条扫描线之间多少格子被覆盖了 精度可tm变态了,可能是因为题目要求的关系吧,需要上取 ...
- HPU暑期集训积分赛1
A. Nth power of n 单点时限: 1.0 sec 内存限制: 512 MB 求 nn 的个位数. 输入格式 多组输入,处理到文件结束.每组数据输入一个 n.(1≤n≤109) 输出格式 ...
- POJ Area of Simple Polygons 扫描线
这个题lba等神犇说可以不用离散化,但是我就是要用. 题干: Description There are N, <= N <= , rectangles -D xy-plane. The ...
- POJ1389 Area of Simple Polygons 线段树
POJ1389 给定n个整数点矩形,求面积并. 显然ans必然是整数. 记录若干个事件,每个矩形的左边的竖边记为开始,右边的竖边记为结束. 进行坐标离散化后用线段树维护每个竖的区间, 就可以快速积分了 ...
- 【POJ 1389】Area of Simple Polygons(线段树+扫描线,矩形并面积)
离散化后,[1,10]=[1,3]+[6,10]就丢了[4,5]这一段了. 因为更新[3,6]时,它只更新到[3,3],[6,6]. 要么在相差大于1的两点间加入一个值,要么就让左右端点为l,r的线段 ...
- Area of Simple Polygons
poj1389:http://poj.org/problem?id=1389 题意:求矩形面积的并题解:扫描线加线段树 同poj1389 #include<iostream> #inclu ...
- POJ 1389 Area of Simple Polygons 扫描线+线段树面积并
---恢复内容开始--- LINK 题意:同POJ1151 思路: /** @Date : 2017-07-19 13:24:45 * @FileName: POJ 1389 线段树+扫描线+面积并 ...
- POJ1389:Area of Simple Polygons——扫描线线段树题解+全套代码注释
http://poj.org/problem?id=1389 题面描述在二维xy平面中有N,1 <= N <= 1,000个矩形.矩形的四边是水平或垂直线段.矩形由左下角和右上角的点定义. ...
- [poj] 1389 Area of Simple Polygons
原题 线段树+扫描线 对于这样一个不规则图形,我们要求他的面积有两种方法,割和补. 补显然不行,因为补完你需要求补上去的内部分不规则图形面积-- 那么怎么割呢? 像这样: 我们就转化成了无数个矩形的和 ...
随机推荐
- Windows下IntelliJ IDEA中调试Spark Standalone
参考:http://dataknocker.github.io/2014/11/12/idea%E4%B8%8Adebug-spark-standalone/ 转载请注明来自:http://www.c ...
- 2nd 阅读构建之法有感
阅读构建之法有感 利用这一周的时间,我大致了解构建之法一书,这本书带我走进了一个全新的领域.它让我以一种新的视角去了解软件产业的发展和工作,领略软件工程的独特魅力,更给出了简单易懂的方式去理解何为软件 ...
- ctf实验平台-成绩单
题目链接:http://120.24.86.145:8002/chengjidan/ 平台地址:http://123.206.31.85/ 第一步:暴库 id=-1' union select 1,2 ...
- 常用的一些sql
--根据某一列中包括的逗号将一行数据变多行 select a,c from (with test as (select 'abc' a,'1,2,3' c from dual e) select a, ...
- (转)Elasticsearch search-guard 插件部署
我之前写了ELK+shield的部署文档,由于shield是商业收费的,很多人都推崇开源项目search-guard来做ELK的安全组件,准确来说是elasticsearch的安全组件.search- ...
- [翻译]API Guides - Layouts
官方文档地址:http://developer.android.com/guide/topics/ui/declaring-layout.html PS:API Guides里面的内容不免都简单些,翻 ...
- SpringMVC Ajax两种传参方式
1.采用@RequestParam或Request对象获取参数的方法 注:contentType必须指定为:application/x-www-form-urlencoded @ResponseBod ...
- 第76天:jQuery中的宽高
Window对象和document对象的区别 1.window对象表示浏览器中打开的窗口 2.window对象可以省略,比如alert()也可以写成window.alert() Document对象是 ...
- HDU4043_FXTZ II
题目描述的意思就不说了,自己考虑的时候就是在所有的排列中,碰到大于前面最大的出现数字的时候就乘以一个二分之一,然后求和. 打表后就会发现,答案分子为1*3*5*……*(2*n-1):分母为2*4*6* ...
- QoS专题-第1期-QoS理论篇
QoS理论篇 1 QoS的产生 随着网络技术的飞速发展,IP网络已经从当初的单一数据网络向集成数据.语音.视频.游戏的多业务网络转变.网络中所承载的数据呈几何级倍数增长,而且这些业务对网络带 ...