思路:挺裸的费用流,拆拆点就好啦。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PII pair<int, int>
#define y1 skldjfskldjg
#define y2 skldfjsklejg
using namespace std; const int N = + ;
const int M = 5e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ; int n, m, edgenum, S, T, head[N], dist[N], pre[N];
bool vis[N]; struct Edge {
int from, to, cap, flow, cost, next;
} edge[M]; void init() {
edgenum = ;
memset(head, -, sizeof(head));
} void addEdge(int u, int v, int w, int c) {
Edge E1 = {u, v, w, , c, head[u]};
edge[edgenum] = E1;
head[u] = edgenum++;
Edge E2 = {v, u, , , -c, head[v]};
edge[edgenum] = E2;
head[v] = edgenum++;
} bool SPFA(int s, int t) {
queue<int> Q;
memset(dist, INF, sizeof(dist));
memset(vis, false, sizeof(vis));
memset(pre, -, sizeof(pre));
dist[s] = ; vis[s] = true; Q.push(s);
while(!Q.empty()) {
int u = Q.front(); Q.pop(); vis[u] = false;
for(int i = head[u]; i != -; i = edge[i].next) {
Edge E = edge[i];
if(dist[E.to] > dist[u] + E.cost && E.cap > E.flow) {
dist[E.to] = dist[u] + E.cost;
pre[E.to] = i;
if(!vis[E.to]) {
vis[E.to] = true;
Q.push(E.to);
}
}
}
}
return pre[t] != -;
} void MCMF(int s, int t, int &cost, int &flow) {
flow = ; cost = ;
while(SPFA(s, t)) {
int Min = INF;
for(int i = pre[t]; i != -; i = pre[edge[i^].to]) {
Edge E = edge[i];
Min = min(Min, E.cap - E.flow);
}
for(int i = pre[t]; i != -; i = pre[edge[i^].to]) {
edge[i].flow += Min;
edge[i^].flow -= Min;
cost += edge[i].cost * Min;
}
flow += Min;
}
}
int main() {
init();
scanf("%d%d", &n, &m);
S = , T = * n;
for(int i = ; i < n; i++) addEdge(i, i + n, , );
addEdge(, + n, inf, ); addEdge(n, n + n, inf, );
for(int i = ; i <= m; i++) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
addEdge(u + n, v, , c);
} int cost, flow;
MCMF(S, T, cost, flow);
printf("%d %d\n", flow, cost);
return ;
} /*
*/

bzoj 1877 最小费用流的更多相关文章

  1. [bzoj 2768]&[bzoj 1877]

    传送门1 传送门1 Solution 两道比较裸的题... 复习一下最大流和费用流的模板. Code[bzoj 2768][JLOI 2010] 冠军调查 #include<bits/stdc+ ...

  2. BZOJ 3438 小M的作物 & BZOJ 1877 [SDOI2009]晨跑

    我由衷地为我的朋友高兴.哈哈,yian,当你nick name破百上千时,再打“蒟蒻”就会被打的. 好的,说正事吧.请注意,这还是题解.但我发现,网络流实在是太套路了(怪不得这两年几乎销声匿迹).我们 ...

  3. BZOJ 1877: [SDOI2009]晨跑 费用流

    1877: [SDOI2009]晨跑 Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一 ...

  4. 【BZOJ 1877】 [SDOI2009]晨跑

    Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一张学校附近的地图,这张地图中包含N个十 ...

  5. BZOJ 1877: [SDOI2009]晨跑( 最小费用最大流 )

    裸的费用流...拆点, 流量限制为1, 最后的流量和费用即答案. ------------------------------------------------------------------- ...

  6. BZOJ 1877 晨跑 拆点费用流

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1877 题目大意: Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧 ...

  7. BZOJ 1877 [SDOI2009]晨跑(多条不交叉最短路)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1877 [题目大意] 找出最多有几条点不重复的从1到N的路,并且要求在满足这个条件的情况 ...

  8. AC日记——[SDOI2009]晨跑 bzoj 1877

    1877: [SDOI2009]晨跑 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 2131  Solved: 1142[Submit][Status][ ...

  9. 【BZOJ 1877】【SDOI 2009】晨跑

    拆点跑$MCMF最小费用最大流$ 复习一下$MCMF$模板啦啦啦--- 一些坑:更新$dist$后要接着更新$pre$,不要判断是否在队列中再更新,,,听不懂吧,听不懂就对了,因为只有我才会在这种错误 ...

随机推荐

  1. Android缓存

    一个利用内存缓存和磁盘缓存图片的例子 public class BitmapCache { public static final String TAG = "debug"; pr ...

  2. 手脱tElock 0.98b1 -> tE!

    声明: 只为纪录自己的脱壳历程,高手勿喷 第一种:两次内存法 注: ①这是在win7x32系统上运行的脱壳,所以可能地址不同 ②修复的时候用等级三修复,最后修复不了的剪切掉然后转存合一正常运行,已测试 ...

  3. 驱动学习3.1:获取zynqled的物理地址

    自己想要打印EMIO管脚的物理地址,在SDK提供的头文件中加入printf是无法打印的,基于此 我将需要打印地址的几个函数提取出来,放在main函数中,然后在里面加入printf打印这些用户管脚的地址 ...

  4. 树dp...吧 ZOJ 3949

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5568 Edge to the Root Time Limit: 1 Secon ...

  5. js写弹窗

    1.先来看弹窗的模样 点击“弹出窗口”后会弹出下面窗口 2.下面是实现弹出窗口的代码,其中引入的jquery一般自己有,没有的话可以从网上下载.tanchuang.js和tanchuang.css写在 ...

  6. NYOJ 141 Squares (数学)

    题目链接 描述 A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degre ...

  7. 【译】第一篇 SQL Server代理概述

    本篇文章是SQL Server代理系列的第一篇,详细内容请参考原文. SQL Server代理是SQL Server的作业调度和告警服务,如果使用得当,它可以大大简化DBA的工作量.SQL Serve ...

  8. filezilla显示隐藏文件

    我们在习惯使用flashfxp等工具,但是随着主机商限制较多,这些老的FTP工具不怎么好用了,比如主机商会推荐使用到Filezilla等工具.但是比如息壤主机,我们在管理linux环境下htacess ...

  9. [转载]PM管理技巧

      产品经理的沟通策略 2016年10月11日/分类: 文章 /编辑: Amy 产品经理处于沟通枢纽的位置,工作中需要跟各种岗位的人打交道,比如:领导.开发.运营.客户.用户.合作伙伴… 沟通能力是产 ...

  10. PHP提取url

    <?php $str = parse_url('http://localhost/?id=2&cd=2', PHP_URL_QUERY); ECHO $str; parse_str($s ...