题目链接

BZOJ1458

题解

对行列分别建边,拆点,设置流量下限

然后\(S\)向行连边\(inf\),列向\(T\)连边\(inf\),行列之间如果没有障碍,就连边\(1\)

然后跑最小可行流即可

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 505,maxm = 500005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 1;
struct EDGE{int to,nxt,f;}ed[maxm];
inline void build(int u,int v,int f){
ed[++ne] = (EDGE){v,h[u],f}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v],0}; h[v] = ne;
}
int vis[maxn],used[maxn],cur[maxn],d[maxn],S,T,now;
int q[maxn],head,tail;
bool bfs(){
vis[S] = now; d[S] = 0; q[head = tail = 0] = S;
int u;
while (head <= tail){
u = q[head++];
Redge(u) if (ed[k].f && vis[to = ed[k].to] != now){
d[to] = d[u] + 1; vis[to] = now;
if (to == T) return true;
q[++tail] = to;
}
}
return vis[T] == now;
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int flow = 0,f,to;
if (used[u] != now) cur[u] = h[u],used[u] = now;
for (int& k = cur[u]; k; k = ed[k].nxt)
if (vis[to = ed[k].to] == now && d[to] == d[u] + 1 && (f = dfs(to,min(ed[k].f,minf)))){
ed[k].f -= f; ed[k ^ 1].f += f;
flow += f; minf -= f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0; now = 1;
while (bfs()){
flow += dfs(S,INF);
now++;
}
return flow;
}
int n,m,K,L[105],C[105],del[105],de[105],g[105][105];
int main(){
n = read(); m = read(); K = read();
REP(i,n) L[i] = read(),del[i] = m;
REP(i,m) C[i] = read(),de[i] = n;
int a,b;
while (K--){
a = read(); b = read();
g[a][b] = true;
del[a]--;
de[b]--;
}
S = 0; T = ((n + m) << 1) + 3;
int SS = (n + m) << 1 | 1,TT = SS + 1,E = n + m;
REP(i,n){
build(SS,i,INF);
build(S,i + E,L[i]);
build(i,T,L[i]);
if (del[i] > L[i]) build(i,i + E,del[i] - L[i]);
REP(j,m) if (!g[i][j]){
build(i + E,n + j,1);
}
}
REP(i,m){
build(n + i + E,TT,INF);
build(S,n + i + E,C[i]);
build(n + i,T,C[i]);
if (de[i] > C[i]) build(n + i,n + i + E,de[i] - C[i]);
}
maxflow();
build(TT,SS,INF);
maxflow();
Redge(S) if (ed[k].f){puts("JIONG!"); return 0;}
Redge(T) if (ed[k ^ 1].f){puts("JIONG!"); return 0;}
printf("%d\n",ed[h[TT] ^ 1].f);
return 0;
}

BZOJ1458 士兵占领 【带上下界网络流】的更多相关文章

  1. BZOJ1458:士兵占领(有上下界最小流)

    Description 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵.我们称这些士兵占领了整个棋盘当满足第i行至少放 ...

  2. 【BZOJ】1458: 士兵占领(上下界网络流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1458 是不是我脑洞太小了.......直接弄上下界最小流........(就当复习了.. 二分图X和 ...

  3. uoj132/BZOJ4200/洛谷P2304 [Noi2015]小园丁与老司机 【dp + 带上下界网络流】

    题目链接 uoj132 题解 真是一道大码题,,,肝了一个上午 老司机的部分是一个\(dp\),观察点是按\(y\)分层的,而且按每层点的上限来看可以使用\(O(nd)\)的\(dp\),其中\(d\ ...

  4. 【bzoj1458】士兵占领 有上下界最小流

    题目描述 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵.我们称这些士兵占领了整个棋盘当满足第i行至少放置了Li个士兵 ...

  5. hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )

    题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...

  6. BZOJ2150 部落战争 【带上下界最小流】

    题目链接 BZOJ2150 题解 复习: 带上下界网络流两种写法: 不建\(T->S\)的\(INF\)的边,即不考虑源汇点,先求出此时超级源汇的最大流,即无源汇下最大的自我调整,再加入该边,求 ...

  7. CF#366 704D Captain America 上下界网络流

    CF上的题,就不放链接了,打开太慢,直接上题面吧: 平面上有n个点, 第 i 个点的坐标为 ($X_i ,Y_i$), 你需要把每个点染成红色或者蓝色, 染成红色的花费为 r , 染成蓝色的花费为 b ...

  8. ZOJ 2314 Reactor Cooling 带上下界的网络流

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意: 给n个点,及m根pipe,每根pipe用来流躺液体的, ...

  9. bzoj1458: 士兵占领(最大流)

    题目描述 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵.我们称这些士兵占领了整个棋盘当满足第i行至少放置了Li个士兵 ...

随机推荐

  1. WeTest功能优化第2期:云真机智能投屏,调试告别鼠标

    第2期功能优化目录 [云真机视频映射]云真机画面本地映射[兼容性测试报告]新增问题机型聚类功能[新增Android9.0]同步上线最新安卓系统 本期介绍的云测产品功能优化,既有重磅级技术突破,也有报告 ...

  2. path.resolve()和path.join()的区别

    path.join()  组装路径.该方法的主要用途在于,会正确使用当前系统的路径分隔符,Unix系统是/,Windows系统是\.路径字符中可以使用..或../进行相对路径的计算,其它路径表示符会被 ...

  3. hdu刷题2

    hdu1021 给n,看费波纳列数能否被3整除 算是找规律吧,以后碰到这种题就打打表找找规律吧 #include <stdio.h> int main(void) { int n; whi ...

  4. 技本功丨知否知否,Redux源码竟如此意味深长(上集)

    夫 子 说 元月二号欠下袋鼠云技术公号一篇关于Redux源码解读的文章,转眼月底,期间常被“债主”上门催债.由于年底项目工期比较紧,于是债务就这样被利滚利.但是好在这段时间有点闲暇,于是赶紧把这篇文章 ...

  5. NOIP2019普及级别模拟 3.30校模拟

    好吧我还是第一次写这种总结类的玩意… 考场心情…hmm…我没睡醒.是的是这样的,反正题都有两三个看错了或者没看懂… 最关键的是!!我!居!然!把!Freopen!写!在!了!程!序!最!后! 然后就和 ...

  6. 【机器学习】线性回归python实现

    线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用python实现线性回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 写了三个例子,分别是单变量的 ...

  7. Python实现个性化推荐二

    基于内容的推荐引擎是怎么工作的 基于内容的推荐系统,正如你的朋友和同事预期的那样,会考虑商品的实际属性,比如商品描述,商品名,价格等等.如果你以前从没接触过推荐系统,然后现在有人拿枪指着你的头,强迫你 ...

  8. css3美化radio样式

    .magic-radio{ position: absolute; display: none; } .magic-radio + label { position: relative; displa ...

  9. Python函数的内省-Introspection

    Python函数可以进行内省-Introspection,查看函数内部的细节,方式就是使用函数的__code__属性. def func(a, b = 2): return a + b >> ...

  10. 衡量经济活动的价值:国内生产总值(GDP, Gross Domestic Product)

    定义 GDP是在给定的时期内,经济生产的所有最终产品和服务的市场价值. 由于每一件产品或者服务的交易都会涉及到一个买者和一个卖着,买者支出的每一元钱必然成为卖者收入的每一元钱,因此,GDP既可以看成是 ...