link

我们可以很容易的推断出$-1$是单调不降的,若$i>j$且$a_i$与$a_j$都没有填数,若填完之后$a_i>a_j$或者$a_i<a_j$,则对答案产生影响的只在$[i,j]$之间,则$a_i<a_j$对答案产生的贡献更小,则其实每个不同位置的$-1$其实是互不影响的,所以就可以用$dp$实现

设$dp(i,j)$表示这是从右往左数第$i$个$-1$,这里填j的最小逆序对数(这里的逆序对是只与$-1$有关的,其他的单算)

则$dp(i,j)=min(dp(i-1,p)+在第i个-1左面不是-1的对此数新产生的逆序对数+此数填后对右面产生的贡献) (j \leq p)$

我们可以用线段树维护逆序对,时间复杂度:$O(n\times k^2)$

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
inline int read(){
int f=,ans=;char c;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
int n,k,a[],cnt[],ans[];
void add(int k,int l,int r,int x,int y){
if(x>y) return ;
if(x<=l&&r<=y){ans[k]++;return;}
int mid=l+r>>;
if(x<=mid) add(k<<,l,mid,x,y);
if(mid<y) add(k<<|,mid+,r,x,y);
ans[k]=ans[k<<]+ans[k<<|];
return;
}
int query(int k,int l,int r,int x,int y){
if(x>y) return ;
if(x<=l&&r<=y) return ans[k];
int mid=l+r>>,res=;
if(x<=mid) res+=query(k<<,l,mid,x,y);
if(mid<y) res+=query(k<<|,mid+,r,x,y);
return res;
}
int cost[][],sum,dp[][],tot,minn,inf=<<-;
int main(){
minn=inf;
memset(dp,/,sizeof(dp));
n=read(),k=read();
for(int i=;i<=n;i++){
a[i]=read();
if(a[i]==-)
cnt[++cnt[]]=i;
}
for(int i=;i<=n;i++){
for(int j=;j<=k;j++){
cost[i][j]=cost[i-][j];
if(j<=a[i]) cost[i][j]++;
}
}
for(int i=;i<=k;i++) dp[][i]=;
for(int i=n;i>=;i--){
if(a[i]!=-){
sum+=query(,,k,,a[i]-);
add(,,k,a[i],a[i]);
}else{
tot++;
for(int j=;j<=k;j++){
for(int p=j;p<=k;p++){
dp[tot][j]=min(dp[tot-][p]+query(,,k,,j-)+cost[i][j+],dp[tot][j]);
if(tot==cnt[]) minn=min(minn,dp[tot][j]);
}
}
}
}
if(minn==inf) cout<<sum;
else cout<<sum+minn;
}

[AHOI2008] 逆序对的更多相关文章

  1. BZOJ1831: [AHOI2008]逆序对

    1831: [AHOI2008]逆序对 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 341  Solved: 226[Submit][Status] ...

  2. 【BZOJ1831】[AHOI2008]逆序对(动态规划)

    [BZOJ1831][AHOI2008]逆序对(动态规划) 题面 BZOJ 洛谷 题解 显然填入的数拎出来是不降的. 那么就可以直接大力\(dp\). 设\(f[i][j]\)表示当前填到了\(i\) ...

  3. bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)

    1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之 ...

  4. BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对

    这两道题是一样的. 可以发现,-1变成的数是单调不降. 记录下原有的逆序对个数. 预处理出每个点取每个值所产生的逆序对个数,然后dp转移. #include<cstring> #inclu ...

  5. 【BZOJ】1831: [AHOI2008]逆序对

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到 ...

  6. 【[AHOI2008]逆序对】

    被锤爆了 被这个题搞得自闭了一上午,觉得自己没什么前途了 我又没有看出来这个题的一个非常重要的性质 我们填进去的数一定是单调不降的 首先如果填进去的数并不是单调不降的,那么填进去本身就会产生一些逆序对 ...

  7. 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)

    题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...

  8. [AHOI2008]逆序对(dp)

    小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之间.如果有两个数A和B,A在B左边且A大于B,我们就称这两个数为 ...

  9. BZOJ 1831: [AHOI2008]逆序对

    题目大意: 给出一个序列,有几个位置上的数字任意.求最小的逆序对数. 题解: 自己决定放置的数一定是单调不降的.不然把任意两个交换一下就能证明一定会增加逆序对. 然后就可以DP了,f[i][j]表示第 ...

随机推荐

  1. [转载]Tensorflow中reduction_indices 的用法

    Tensorflow中reduction_indices 的用法 默认时None 压缩成一维

  2. Reject Inference: Your Data is Deceiving You

    Keyword: Reject Inference Suppose there is a dataset of several attributes, including working condit ...

  3. Python3 Tkinter-Scale

    1.创建 from tkinter import * root=Tk() Scale(root).pack() root.mainloop() 2.参数 from tkinter import * r ...

  4. 浅谈蓝牙低功耗(BLE)的几种常见的应用场景及架构(转载)

    转载来至beautifulzzzz,网址http://www.cnblogs.com/zjutlitao/,推荐学习 蓝牙在短距离无线通信领域占据举足轻重的地位—— 从手机.平板.PC到车载设备, 到 ...

  5. windows编程入门最重要的

    要入门 Windows 编程,最重要的不是阅读什么教材,使用什么工具,而是先必须把以下几个对于初学者来说非常容易困惑的重要概念搞清楚: 1. 文字的编码和字符集.这部分需要掌握 ANSI 模式和 Un ...

  6. C语言--链表基础模板

    1.建立结构体 struct ST { int num;///学号 int score;///成绩 struct ST*next; };///结构体 2.空链表的创建 struct ST creatN ...

  7. Alpha 冲刺4

    队名:日不落战队 安琪(队长) 今天完成的任务 组织第四次站立式会议. 完成40%草稿箱前端界面. 明天的计划 剩下的60%草稿箱前端界面. 如果还有时间,尝试去调用数据. 还剩下的任务 回收站前端界 ...

  8. LintCode-174.删除链表中倒数第n个节点

    删除链表中倒数第n个节点 给定一个链表,删除链表中倒数第n个节点,返回链表的头节点. 注意事项 链表中的节点个数大于等于n 样例 给出链表 1->2->3->4->5-> ...

  9. LintCode-372.在O(1)时间复杂度删除链表节点

    在O(1)时间复杂度删除链表节点 给定一个单链表中的一个等待被删除的节点(非表头或表尾).请在在O(1)时间复杂度删除该链表节点. 样例 给定 1->2->3->4,和节点 3,删除 ...

  10. 【OSG】运行OSG示例出现的奶牛不完整问题

    发现一个很奇怪的问题:我用笔记本运行OSG里面的示例,出现的图案总是不完整显示的,以经典的奶牛图案为例,如图. 图一是我电脑上的情况,正常情况应该是图二.不知道这是什么原因,难道是我电脑显卡的原因吗? ...