link

我们可以很容易的推断出$-1$是单调不降的,若$i>j$且$a_i$与$a_j$都没有填数,若填完之后$a_i>a_j$或者$a_i<a_j$,则对答案产生影响的只在$[i,j]$之间,则$a_i<a_j$对答案产生的贡献更小,则其实每个不同位置的$-1$其实是互不影响的,所以就可以用$dp$实现

设$dp(i,j)$表示这是从右往左数第$i$个$-1$,这里填j的最小逆序对数(这里的逆序对是只与$-1$有关的,其他的单算)

则$dp(i,j)=min(dp(i-1,p)+在第i个-1左面不是-1的对此数新产生的逆序对数+此数填后对右面产生的贡献) (j \leq p)$

我们可以用线段树维护逆序对,时间复杂度:$O(n\times k^2)$

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
inline int read(){
int f=,ans=;char c;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
int n,k,a[],cnt[],ans[];
void add(int k,int l,int r,int x,int y){
if(x>y) return ;
if(x<=l&&r<=y){ans[k]++;return;}
int mid=l+r>>;
if(x<=mid) add(k<<,l,mid,x,y);
if(mid<y) add(k<<|,mid+,r,x,y);
ans[k]=ans[k<<]+ans[k<<|];
return;
}
int query(int k,int l,int r,int x,int y){
if(x>y) return ;
if(x<=l&&r<=y) return ans[k];
int mid=l+r>>,res=;
if(x<=mid) res+=query(k<<,l,mid,x,y);
if(mid<y) res+=query(k<<|,mid+,r,x,y);
return res;
}
int cost[][],sum,dp[][],tot,minn,inf=<<-;
int main(){
minn=inf;
memset(dp,/,sizeof(dp));
n=read(),k=read();
for(int i=;i<=n;i++){
a[i]=read();
if(a[i]==-)
cnt[++cnt[]]=i;
}
for(int i=;i<=n;i++){
for(int j=;j<=k;j++){
cost[i][j]=cost[i-][j];
if(j<=a[i]) cost[i][j]++;
}
}
for(int i=;i<=k;i++) dp[][i]=;
for(int i=n;i>=;i--){
if(a[i]!=-){
sum+=query(,,k,,a[i]-);
add(,,k,a[i],a[i]);
}else{
tot++;
for(int j=;j<=k;j++){
for(int p=j;p<=k;p++){
dp[tot][j]=min(dp[tot-][p]+query(,,k,,j-)+cost[i][j+],dp[tot][j]);
if(tot==cnt[]) minn=min(minn,dp[tot][j]);
}
}
}
}
if(minn==inf) cout<<sum;
else cout<<sum+minn;
}

[AHOI2008] 逆序对的更多相关文章

  1. BZOJ1831: [AHOI2008]逆序对

    1831: [AHOI2008]逆序对 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 341  Solved: 226[Submit][Status] ...

  2. 【BZOJ1831】[AHOI2008]逆序对(动态规划)

    [BZOJ1831][AHOI2008]逆序对(动态规划) 题面 BZOJ 洛谷 题解 显然填入的数拎出来是不降的. 那么就可以直接大力\(dp\). 设\(f[i][j]\)表示当前填到了\(i\) ...

  3. bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)

    1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之 ...

  4. BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对

    这两道题是一样的. 可以发现,-1变成的数是单调不降. 记录下原有的逆序对个数. 预处理出每个点取每个值所产生的逆序对个数,然后dp转移. #include<cstring> #inclu ...

  5. 【BZOJ】1831: [AHOI2008]逆序对

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到 ...

  6. 【[AHOI2008]逆序对】

    被锤爆了 被这个题搞得自闭了一上午,觉得自己没什么前途了 我又没有看出来这个题的一个非常重要的性质 我们填进去的数一定是单调不降的 首先如果填进去的数并不是单调不降的,那么填进去本身就会产生一些逆序对 ...

  7. 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)

    题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...

  8. [AHOI2008]逆序对(dp)

    小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之间.如果有两个数A和B,A在B左边且A大于B,我们就称这两个数为 ...

  9. BZOJ 1831: [AHOI2008]逆序对

    题目大意: 给出一个序列,有几个位置上的数字任意.求最小的逆序对数. 题解: 自己决定放置的数一定是单调不降的.不然把任意两个交换一下就能证明一定会增加逆序对. 然后就可以DP了,f[i][j]表示第 ...

随机推荐

  1. Python搭配unittest

    unittest是Python的单元测试框架, 类似于Java里面的TestNG. Unittest.py: import unittest from selenium import webdrive ...

  2. Linux命令应用大词典-第8章 日期和时间

    8.1 cal:显示日历信息 8.2 date:显示和设置系统日期和时间 8.3 hwclock:查看和设置硬件时钟 8.4 clock:查看和设置硬件时钟 8.5 clockdiff:主机之间测量时 ...

  3. git branch 分支与合并

    在使用 git 进行分支开发与合并的时候需要用到这些命令.其他基本 git 命令参考 Git 简易食用指南 git branch 查看分支 git branch 查看当前分支情况 创建分支 git b ...

  4. 地牢逃脱(BFS(广度优先搜索))

    题目描述 给定一个 n 行 m 列的地牢,其中 '.' 表示可以通行的位置,'X' 表示不可通行的障碍,牛牛从 (x0 , y0 ) 位置出发,遍历这个地牢,和一般的游戏所不同的是,他每一步只能按照一 ...

  5. Faster RCNN论文解析

    Faster R-CNN由一个推荐区域的全卷积网络和Fast R-CNN组成, Fast R-CNN使用推荐区域.整个网络的结构如下: 1.1 区域推荐网络 输入是一张图片(任意大小), 输出是目标推 ...

  6. NMAP-主机扫描

    1.全面扫描 2.扫描指定段 3.ping扫描 只进行ping操作,十分隐蔽 4.无ping扫描 适用于防火墙禁止ping 5.TCP SYN扫描 6.TCP ACK扫描 7.UDP扫描 8.ICMP ...

  7. NFS服务搭建使用

    需求:由于线上业务有一些数据存在了Redis数据库和mysql数据库中了,导致了数据较大迁移起来比较麻烦,所以准备搭建NFS来做WEB的共享磁盘,存储这些数据. 服务端搭建: 查看本机关于nfs的包 ...

  8. 推荐形参使用常量引用:void func(const T &);

    一.声明为const的原因: 把函数不会改变的形参定义成普通的引用会带给函数的调用者一种误导,即函数可以修改它的实参的值: 限制函数所能接受的实参类型,如不能把const对象.字面值或者需要类型转换的 ...

  9. Switches and Lamps(思维)

    You are given n switches and m lamps. The i-th switch turns on some subset of the lamps. This inform ...

  10. 算法与数据结构实验题 6.3 search

    ★实验任务 可怜的 Bibi 刚刚回到家,就发现自己的手机丢了,现在他决定回头去搜索 自己的手机. 现在我们假设 Bibi 的家位于一棵二叉树的根部.在 Bibi 的心中,每个节点 都有一个权值 x, ...