题目所谓的序列长度实际上就是各循环节的lcm+1.

所以题目等价于求出 一串数之和等于n,这串数的lcm种数。

由唯一分解定理可以联想到只要把每个素数的幂次放在一个分组里,然后对整体做一遍分组背包就行了。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF (LL)<<
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int pri[N];
LL dp[N][N]; void init(int n)
{
mem(pri,);
FOR(i,,n) {
if (!pri[i]) pri[++pri[]]=i;
for (int j=; j<=pri[]&&pri[j]<=n/i; ++j) {
pri[pri[j]*i]=;
if (i%pri[j]==) break;
}
}
}
int main ()
{
int n;
scanf("%d",&n);
init(n);
FOR(i,,n) dp[][i]=;
FOR(i,,pri[]) FOR(j,,n) {
dp[i][j]=dp[i-][j];
for (int k=pri[i]; k<=j; k*=pri[i]) dp[i][j]+=dp[i-][j-k];
}
printf("%lld\n",dp[pri[]][n]);
return ;
}

BZOJ 1025 游戏(分组背包)的更多相关文章

  1. [bzoj1025][SCOI2009]游戏 (分组背包)

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一 且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们 ...

  2. BZOJ 1025 游戏

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

  3. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  4. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  5. 2018.10.19 NOIP训练 游戏问题(分组背包)

    传送门 分组背包经典问题. 令f[i][j]f[i][j]f[i][j]表示前iii组花费为jjj的最优值. g[i][j]g[i][j]g[i][j]表示前iii组,第iii组已经支付了平台费用的最 ...

  6. HDU 4341 分组背包

    B - Gold miner Time Limit:2000MS      Memory Limit:32768KB     Description Homelesser likes playing ...

  7. Codeforces 946 D.Timetable-数据处理+动态规划(分组背包) 处理炸裂

    花了两个晚上来搞这道题. 第一个晚上想思路和写代码,第二个晚上调试. 然而还是菜,一直调不对,我的队友是Debug小能手呀(真的是无敌,哈哈,两个人一会就改好了) D. Timetable   tim ...

  8. HDU 1561 The more, The Better【树形DP/有依赖的分组背包】

    ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物.但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先 ...

  9. HDU 1712 ACboy needs your help(分组背包)

    题意:给你n的课程组,每个课程组有m个课程,每个课程有一个完成时间与价值.问在m天内每组课程组最多选择一个,这样可以得到的最大价值是多少 题解:分组背包,其实就是每个课程组进行01背包,再在课程组内部 ...

随机推荐

  1. MySQL入门第三天(上)——函数与视图

    一.MySQL函数 同样的,完整的函数可以参照开源中国的手册:http://tool.oschina.net/apidocs/apidoc?api=mysql-5.1-zh 1.字符函数 CONCAT ...

  2. P1113 杂务

    P1113 杂务 题目描述 John的农场在给奶牛挤奶前有很多杂务要完成,每一项杂务都需要一定的时间来完成它.比如:他们要将奶牛集合起来,将他们赶进牛棚,为奶牛清洗乳房以及一些其它工作.尽早将所有杂务 ...

  3. VINS(五)非线性优化与在线标定调整

    首先根据最大后验估计(Maximum a posteriori estimation,MAP)构建非线性优化的目标函数. 初始化过程通过线性求解直接会给出一个状态的初值,而非线性优化的过程关键在于求解 ...

  4. 通过 zxing 生成二维码

    二维码现在随处可见,在日常的开发中,也会经常涉及到二维码的生成,特别是开发一些活动或者推广方面的功能时,二维码甚至成为必备功能点.本文介绍通过 google 的 zxing 包生成带 logo 的二维 ...

  5. Qt-QML-QML调用C++类

    QML用来做界面,在不考虑数据的请款下,那是溜溜的,但是,程序是没有不和后台数据交互的,但是了,QML在数据处理方面的效率又是不敢恭维的,这里就出现了QML负责前端界面,而后端使用JS或者C++了. ...

  6. 180601-MySql性能监控工具MyTop

    文章链接:https://blog.hhui.top/hexblog/2018/06/01/180601-MySql性能监控工具MyTop/ mysql 性能监控小工具之 mytop 参考: How ...

  7. 前端开发工程师 - 06.Mini项目实战 - 项目简介

    第6章--Mini项目实战 项目简介 Mini项目简介-Ego社区开发 回顾: 页面制作 页面架构 JavaScript程序设计 DOM编程艺术 产品前端架构 实践课Mini项目--Ego: 主题:漫 ...

  8. 【scroll-view】 可滚动视图组件说明

    scroll-view 可滚动视图容器 原型: <scroll-view scroll-x="[Boolean]" scroll-y="[Boolean]" ...

  9. kafka stream 低级别的Processor API动态生成拓扑图

    public class KafkaSream { public static void main(String[] args) { Map<String, Object> props = ...

  10. jupyter notebook 使用cmd命令窗口打开

    第一步:将文件路径改为你需要使用文件所在的路径 第二部:   jupyter notebook