POJ 1830 开关问题(Gauss 消元)
开关问题
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 7726 | Accepted: 3032 |
Description
Input
每组测试数据的格式如下:
第一行 一个数N(0 < N < 29)
第二行 N个0或者1的数,表示开始时N个开关状态。
第三行 N个0或者1的数,表示操作结束后N个开关的状态。
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。
Output
Sample Input
2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0
Sample Output
4
Oh,it's impossible~!!
Hint
一共以下四种方法:
操作开关1
操作开关2
操作开关3
操作开关1、2、3 (不记顺序)
Source
#include<cstdio>
#include<iostream>
#include<cstring>
#define clr(x) memset(x,0,sizeof(x))
using namespace std;
int A[][];
int b0[],b1[],b[];
int main()
{
int T,n,a1,a2,p,ct,ans,inf;
scanf("%d",&T);
while(T--)
{
clr(A);
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",&b0[i]);
for(int i=;i<n;i++)
{
scanf("%d",&b1[i]);
b[i]=(b0[i]+b1[i])%;
}
while(scanf("%d%d",&a1,&a2) && a1 && a2)
{
A[a2-][a1-]=;
}
for(int i=;i<n;i++)
{
A[i][n]=b[i];
A[i][i]=;
}
ct=-; for(int i=;;i++)
{
ct++;
if(ct>=n)
{
p=i;
break;
}
while(!A[i][ct])
{
for(int j=i+;j<n;j++)
if(A[j][ct])
{
for(int k=;k<=n;k++)
{
p=A[i][k];
A[i][k]=A[j][k];
A[j][k]=p;
}
break;
}
if(!A[i][ct])
ct++;
if(ct>=n)
break;
}
if(ct>=n)
{
p=i;
break;
}
for(int j=i+;j<n;j++)
if(A[j][ct])
for(int k=ct;k<=n;k++)
A[j][k]=(A[j][k]+A[i][k])%;
}
inf=;
for(int i=p;i<n;i++)
if(A[i][n])
{
inf=;
break;
}
// for(int i=0;i<n;i++)
// {
// for(int j=0;j<=n;j++)
// printf("%d ",A[i][j]);
// printf("\n");
// }
if(inf)
{
printf("Oh,it's impossible~!!\n");
continue;
}
ans=<<(n-p);
printf("%d\n",ans);
}
return ;
}
POJ 1830 开关问题(Gauss 消元)的更多相关文章
- POJ 1830 开关问题 高斯消元,自由变量个数
http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...
- POJ 1830 开关问题 (高斯消元)
题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...
- POJ 1830 开关问题 [高斯消元XOR]
和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...
- POJ.1830.开关问题(高斯消元 异或方程组)
题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...
- POJ1830开关问题——gauss消元
题目链接 分析: 第一个高斯消元题目,操作是异或.奇偶能够用0.1来表示,也就表示成bool类型的方程,操作是异或.和加法没有差别 题目中有两个未知量:每一个开关被按下的次数(0.1).每一个开关的转 ...
- poj 1681(Gauss 消元)
Painter's Problem Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5875 Accepted: 2825 ...
- hdu 5755(Gauss 消元) &poj 2947
Gambler Bo Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Tota ...
- $Gauss$消元
$Gauss$消元 今天金牌爷来问我一个高消的题目,我才想起来忘了学高消... 高斯消元用于解线性方程组,也就是形如: $\left\{\begin{matrix}a_{11}x_1+a_{12}x_ ...
- 求一个n元一次方程的解,Gauss消元
求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(mat ...
随机推荐
- Python 对象模型 -- (转)
面向对象的纯粹性 在很久很久以前,C++还被称为面向对象语言(现在一般称为多范式通用语言),人们就对C++的面向对象的纯粹性提出了质疑,主要有以下几点: 并非所有的对象都是对象(很拗口?),比如指针本 ...
- DesignPattern
目录
- st2-045漏洞利用poc
use LWP::UserAgent; undef $/; ){print "Use:poc.pl http://target/index.action\n";exit;} my ...
- imx6设备树pinctrl解析【转】
转自:http://blog.csdn.net/michaelcao1980/article/details/50730421 版权声明:本文为博主原创文章,未经博主允许不得转载. 最近在移植linu ...
- C#调用Excel报 error CS1969: 找不到编译动态表达式所需的一个或多个类型。是否缺少引用?
转自[http://blog.csdn.net/bodybo/article/details/43191319] 程序需要读取Exel文件,有如下代码段 object oMissing = Syste ...
- python笔记_查看函数调用栈的一个小技巧
一.背景 最近在看一个开源框架的源码,涉及到的内容非常杂乱,有的函数不知道是在什么时候被谁给调用了?调用的时候传入了什么参数?为了解决这个问题,写了一个小的装饰器. 二.实现 这个装饰器函数主要参考了 ...
- Foreach与迭代器
Foreach与迭代器 Foreach语句可以用于数组和集合的遍历.之所以能够工作,是因为Java SE5引入了新的被称为Iterable的接口,该接口中包含一个能够产生Iterator的iterat ...
- git 查看远程分支 $ git branch -a
查看远程分支 加上-a参数可以查看远程分支,远程分支会用红色表示出来(如果你开了颜色支持的话): 1 2 3 4 5 6 7 8 9 10 $ git branch -a master remote ...
- Python+Selenium 自动化实现实例-定位一组对象(checkbox,inputs)
# -*- coding: utf-8 -*- from selenium import webdriver import time import os dr = webdriver.Chrome() ...
- LeetCode解题报告—— N-Queens && Edit Distance
1. N-Queens The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no ...