现场赛大佬打印的代码,观摩了一哈。

写了注释,贴一下,好好学习。%%%PKU

代码:

 //树上差分(LCA)
#include<bits/stdc++.h> #define For(i,x,y) for (int i=x;i<y;i++)
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define lf else if #define dprintf(...) fprintf(stderr,__VA_ARGS__)
using namespace std; typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
typedef vector<int> Vi; int IN(){//读入挂
int c,f,x;
while (!isdigit(c=getchar())&&c!='-');c=='-'?(f=,x=):(f=,x=c-'');
while (isdigit(c=getchar())) x=(x<<)+(x<<)+c-'';return !f?x:-x;
} const int p=1e9+;
const int N=3e5+; int Pow(int a,int b){//快速幂
int res=;
for (;b;b>>=,a=1ll*a*a%p) if (b&) res=1ll*res*a%p;
return res;
} struct Edge{
int y,nxt;
} E[N*];
int fac[N],inv[N];
int las[N],fa[][N],A[N],B[N],dep[N];
int n,m,cnt,x,y,z,ans,k; int C(int n,int m){//组合数
if (n<m) return ;
return 1ll*fac[n]*inv[m]%p*inv[n-m]%p;
} void Link(int x,int y){//链式前向星存图
E[cnt]=(Edge){y,las[x]};las[x]=cnt++;
E[cnt]=(Edge){x,las[y]};las[y]=cnt++;
} void dfs(int x){//LCA的dfs
for (int i=las[x],y;~i;i=E[i].nxt)
if ((y=E[i].y)!=fa[][x]){
fa[][y]=x;
dep[y]=dep[x]+;
dfs(y);
}
} int LCA(int x,int y){//LCA(ST)
if (dep[x]>dep[y]) swap(x,y);
for (int i=dep[y]-dep[x],k=;i;i>>=,k++) if(i&) y=fa[k][y];
if(x==y) return x;
for (int i=;~i;i--) if (fa[i][x]!=fa[i][y]) x=fa[i][x],y=fa[i][y];
return fa[][x];
} void Dfs(int x){//树上差分的dfs,从根节点深搜,回溯时将其本身的权值加上所有子节点的权值
for (int i=las[x],y;~i;i=E[i].nxt)
if ((y=E[i].y)!=fa[][x]){//筛掉父节点
Dfs(y);
A[x]+=A[y];//累加权值和
B[x]+=B[y];
}
} void Main(){
n=IN(),m=IN(),k=IN();
For(i,,n+) las[i]=-,A[i]=B[i]=;
cnt=;
For(i,,n) Link(IN(),IN());
dfs();
For(i,,) For(x,,n+) fa[i][x]=fa[i-][fa[i-][x]];
For(i,,m+){
x=IN(),y=IN();
z=LCA(x,y);
A[x]++,A[y]++,A[z]--,A[fa[][z]]--;
B[x]++,B[y]++,B[z]-=;//起点终点权值+1,lca权值-2
}
Dfs();
ans=;
// cout<<"--------"<<endl;
// for(int i=1;i<=n;i++)
// cout<<i<<" "<<A[i]<<endl;
// cout<<"--------"<<endl;
// for(int i=2;i<=n;i++)
// cout<<i<<" "<<B[i]<<endl;
// cout<<"--------"<<endl;
For(i,,n+){
ans=(ans+C(A[i],k))%p;
}
For(i,,n+){
ans=(ans-C(B[i],k)+p)%p;
}
printf("%d\n",ans);
} int main(){
fac[]=;
For(i,,N) fac[i]=1ll*fac[i-]*i%p;
inv[N-]=Pow(fac[N-],p-);
for(int i=N-;i;i--) inv[i-]=1ll*inv[i]*i%p;
for(int T=IN();T--;) Main();
} /*
1
3 6 2
1 2
1 3
1 1
2 2
3 3
1 2
1 3
2 3
*/

OK.

2018 icpc 徐州现场赛G-树上差分+组合数学-大佬的代码的更多相关文章

  1. 2018 ICPC 徐州网络赛

    2018 ICPC 徐州网络赛 A. Hard to prepare 题目描述:\(n\)个数围成一个环,每个数是\(0\)~\(2^k-1\),相邻两个数的同或值不为零,问方案数. solution ...

  2. 2018 icpc 徐州网络赛 F Features Track

    这个题,我也没想过我这样直接就过了 #include<bits/stdc++.h> using namespace std; ; typedef pair<int,int> p ...

  3. 【2018 ICPC焦作网络赛 G】Give Candies(费马小定理+快速幂取模)

    There are N children in kindergarten. Miss Li bought them N candies. To make the process more intere ...

  4. 2018 ICPC 沈阳网络赛

    2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...

  5. 2018 icpc 徐州

    A 矩阵树定理可以用于最小生成树计数,最直观的做法就是求个mst,再用矩阵树定理求最小生成树个数,但是n<=1e5,显然不是o(n^3)可以做出来的. 考虑随机数据生成器,固定1e5的边,但是边 ...

  6. 【2018 ICPC亚洲区域赛徐州站 A】Rikka with Minimum Spanning Trees(求最小生成树个数与总权值的乘积)

    Hello everyone! I am your old friend Rikka. Welcome to Xuzhou. This is the first problem, which is a ...

  7. hihoCoder #1871 : Heshen's Account Book-字符串暴力模拟 自闭(getline()函数) (ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction B) 2018 ICPC 北京区域赛现场赛B

    P2 : Heshen's Account Book Time Limit:1000ms Case Time Limit:1000ms Memory Limit:512MB Description H ...

  8. hihoCoder #1870 : Jin Yong’s Wukong Ranking List-闭包传递(递归) (ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction A) 2018 ICPC 北京区域赛现场赛A

    P1 : Jin Yong’s Wukong Ranking List Time Limit:1000ms Case Time Limit:1000ms Memory Limit:512MB Desc ...

  9. 2018徐州现场赛A

    题目链接:http://codeforces.com/gym/102012/problem/A 题目给出的算法跑出的数据是真的水 #include<iostream> #include&l ...

随机推荐

  1. centos6.5 配置mongodb3

    下载地址 http://www.mongodb.org/downloads 下载 curl -O -L https://fastdl.mongodb.org/linux/mongodb-linux-i ...

  2. Nginx+Tomcat关于Session的管理

    前言 Nginx+Tomcat对Session的管理一直有了解,但是一直没有实际操作一遍,本文从最简单的安装启动开始,通过实例的方式循序渐进的介绍了几种管理session的方式. nginx安装配置 ...

  3. [Luogu 2221] HAOI2012 高速公路

    [Luogu 2221] HAOI2012 高速公路 比较容易看出的线段树题目. 由于等概率,期望便转化为 子集元素和/子集个数. 每一段l..r中,子集元素和为: \(\sum w_{i}(i-l+ ...

  4. Tomcat启动报错:org.apache.catalina.LifecycleException: Failed to start component [StandardEngine[Catalin

    Error starting ApplicationContext. To display the auto-configuration report re-run your application ...

  5. ssh 远程执行命令简介

    在写这篇博客之前,我google了一堆相关文章,大都是说修改/etc/sudoers,然后NOPASSWD:指定的cmd,但是真心不管用,没有远程虚拟终端这个方法就是浮云,ubuntu10.04 se ...

  6. bzoj3043 IncDec Sequence

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3043 [题解] 比较神奇的一道题,开始没往差分的角度上想,所以没想出来. 考虑查分数组,有$ ...

  7. Watchcow(POJ2230+双向欧拉回路+打印路径)

    题目链接:http://poj.org/problem?id=2230 题目: 题意:给你m条路径,求一条路径使得从1出发最后回到1,并满足每条路径都恰好被沿着正反两个方向经过一次. 思路:由于可以回 ...

  8. vue_axios请求后台接口cookie无法传值

    2018年3月7日: 当我们使用http向后台发送请求的时候,需要通过cookie把一些密匙传递给后台做判断授权登陆,当然前提是后台会先把cookie保持到本地. 使用vue开发的时候,会出现这个问题 ...

  9. mave的依赖范围

    compile(编译范围) compile是默认的范围:如果没有提供一个范围,那该依赖的范围就是编译范 围.编译范围依赖在所有的classpath中可用,同时它们也会被打包. provided(已提供 ...

  10. python产生随机样本数据

    一.产生X样本 x_train = np.random.random((5, 3)) 随机产生一个5行3列的样本矩阵,也就是5个维度为3的训练样本. array([[ 0.56644011, 0.75 ...