e的理解
1.
e是一个重要的常数,但是我一直不知道,它的真正含义是什么。
它不像π。大家都知道,π代表了圆的周长与直径之比3.14159,可是如果我问你,e代表了什么。你能回答吗?
维基百科说:
"e是自然对数的底数。"
但是,你去看"自然对数",得到的解释却是:
"自然对数是以e为底的对数函数,e是一个无理数,约等于2.718281828。"
这就构成了循环定义,完全没有说e是什么。数学家选择这样一个无理数作为底数,还号称这种对数很"自然",这难道不是很奇怪的事情吗?
2.
昨天我读到一篇好文章,它把这个问题解释得非常清楚,而且一看就懂。
它说,什么是e?简单说,e就是增长的极限。
下面就是它的解释。
3.
假定有一种单细胞生物,它每过24小时分裂一次。
那么很显然,这种生物的数量,每天都会翻一倍。今天是1个,明天就是2个,后天就是4个。我们可以写出一个增长数量的公式:
growth=2x
上式中的x就表示天数。这种生物在x天的总数,就是2的x次方。这个式子可以被改成下面这样:
growth=(1+100%)x
其中,1表示原有数量,100%表示单位时间内的增长率。当然我们也可以用任何增长率
growth=(1+return)x
4.
我们继续假定:每过12个小时,也就是分裂进行到一半的时候,新产生的那半个细胞已经可以再次分裂了。
因此,一天24个小时可以分成两个阶段,每一个阶段都在前一个阶段的基础上增长50%。
growth=(1+100%/2)2

当这一天结束的时候,我们一共得到了2.25个细胞。其中,1个是原有的,1个是新生的,另外的0.25个是新生细胞分裂到一半的。
如果我们继续修改假设,这种细胞每过8小时就具备独立分裂的能力,也就是将1天分成3个阶段。
growth=(1+100%/3)3

那么,最后我们就可以得到大约2.37个细胞。
很自然地,如果我们进一步设想,这种分裂是连续不断进行的,新生细胞每分每秒都具备继续分裂的能力,那么一天最多可以得到多少个细胞呢?
n (1 + 1/n)^n
-----------------------
1 2
2 2.25
3 2.37
5 2.488
10 2.5937
100 2.7048
1,000 2.7169
10,000 2.71814
100,000 2.718268
1,000,000 2.7182804
...
当n趋向无限时,这个式子的极值等于2.718281828...。

因此,当增长率为100%保持不变时,我们在单位时间内最多只能得到2.71828个细胞。数学家把这个数就称为e,它的含义是单位时间内,持续的翻倍增长所能达到的极限值。
这个值是自然增长的极限,因此以e为底的对数,就叫做自然对数。
5.
有了这个值以后,计算银行的复利就非常容易。
假定有一家银行,每年的复利是100%,请问存入100元,一年后可以拿多少钱?
回答就是271.828元,等于100个e。
但是,实际生活中,银行的利息没有这么高,如果利息率只有5%,那么100元存一年可以拿到多少钱呢?
为了便于思考,我们取n等于50:
我们知道,在100%利息率的情况下,n=1000所得到的值非常接近e:
因此,5%利息率就相当于e的20分之一次方:
20分之一正好等于5%的利率率,所以我们可以把公式改写成:
上式的rate就代表增长率。这说明e可以用于任何增长率的计算,前提是它必须是持续不断的复合式增长。
6.
再考虑时间因素,如果把钱在银行里存2年,可以得到多少钱?
在时间t的情况下,通用公式就是:
上式就是计算增长量的万能公式,可以适用于任何时间、任何增长率。
7.
回到上面的例子,如果银行的利息率是5%的复利,请问100元存款翻倍需要多少时间?
计算结果是13.86年:
上式最后一个等号,表明用72除以增长率,可以得到翻倍的大致时间,这就是72法则的来源。
(完)
e的理解的更多相关文章
- 理解CSS视觉格式化
前面的话 CSS视觉格式化这个词可能比较陌生,但说起盒模型可能就恍然大悟了.实际上,盒模型只是CSS视觉格式化的一部分.视觉格式化分为块级和行内两种处理方式.理解视觉格式化,可以确定得到的效果是应 ...
- 彻底理解AC多模式匹配算法
(本文尤其适合遍览网上的讲解而仍百思不得姐的同学) 一.原理 AC自动机首先将模式组记录为Trie字典树的形式,以节点表示不同状态,边上标以字母表中的字符,表示状态的转移.根节点状态记为0状态,表示起 ...
- 理解加密算法(三)——创建CA机构,签发证书并开始TLS通信
接理解加密算法(一)--加密算法分类.理解加密算法(二)--TLS/SSL 1 不安全的TCP通信 普通的TCP通信数据是明文传输的,所以存在数据泄露和被篡改的风险,我们可以写一段测试代码试验一下. ...
- node.js学习(三)简单的node程序&&模块简单使用&&commonJS规范&&深入理解模块原理
一.一个简单的node程序 1.新建一个txt文件 2.修改后缀 修改之后会弹出这个,点击"是" 3.运行test.js 源文件 使用node.js运行之后的. 如果该路径下没有该 ...
- 如何一步一步用DDD设计一个电商网站(一)—— 先理解核心概念
一.前言 DDD(领域驱动设计)的一些介绍网上资料很多,这里就不继续描述了.自己使用领域驱动设计摸滚打爬也有2年多的时间,出于对知识的总结和分享,也是对自我理解的一个公开检验,介于博客园这个平 ...
- 学习AOP之透过Spring的Ioc理解Advisor
花了几天时间来学习Spring,突然明白一个问题,就是看书不能让人理解Spring,一方面要结合使用场景,另一方面要阅读源代码,这种方式理解起来事半功倍.那看书有什么用呢?主要还是扩展视野,毕竟书是别 ...
- ThreadLocal简单理解
在java开源项目的代码中看到一个类里ThreadLocal的属性: private static ThreadLocal<Boolean> clientMode = new Thread ...
- JS核心系列:理解 new 的运行机制
和其他高级语言一样 javascript 中也有 new 运算符,我们知道 new 运算符是用来实例化一个类,从而在内存中分配一个实例对象. 但在 javascript 中,万物皆对象,为什么还要通过 ...
- 深入理解JS 执行细节
javascript从定义到执行,JS引擎在实现层做了很多初始化工作,因此在学习JS引擎工作机制之前,我们需要引入几个相关的概念:执行环境栈.全局对象.执行环境.变量对象.活动对象.作用域和作用域链等 ...
- 浅谈我对DDD领域驱动设计的理解
从遇到问题开始 当人们要做一个软件系统时,一般总是因为遇到了什么问题,然后希望通过一个软件系统来解决. 比如,我是一家企业,然后我觉得我现在线下销售自己的产品还不够,我希望能够在线上也能销售自己的产品 ...
随机推荐
- hadoop 分布式集群安装
这一套环境搭完,你有可能碰到无数个意想不到的情况. 用了1周的时间,解决各种linux菜鸟级的问题,终于搭建好了.. 沿途的风景,甚是历练. 环境介绍: 系统:win7 内存:16G(最低4G,不然跑 ...
- Shell编程-02-Shell变量
目录 什么是Shell变量 变量类型 环境变量初始化及其对应文件的生效顺序 什么是Shell变量 在初等数学数学方程式中,我们会经常碰到类似于这样的方程式:y=x+1 ,等号左右两边的x和y称 ...
- [C#]读取指定路径的配置文件[转]
ExeConfigurationFileMap map = new ExeConfigurationFileMap(); map.ExeConfigFilename = @"C:\App.c ...
- centos 安装 tkinter(不只用来做界面,在pylot中也使用)
Python2 [root@binger ~]# yum -y install tkinter tcl-devel tk-devel [root@binger ~]# rpm -qa | grep ^ ...
- Spring中ApplicationContext和beanfactory区别---解析一
BeanFacotry是spring中比较原始的Factory.如XMLBeanFactory就是一种典型的BeanFactory.原始的BeanFactory无法支持spring的许多插件,如AOP ...
- jenkins启动失败,提示Starting Jenkins Jenkins requires Java8 or later, but you are running 1.7.0
# 背景 centos安装jenkins后,先启动jenkins服务,结果报错如下: 但自己明明已经安装了java8的 # 解决方法 既然安装了java8的话,那么证明是jenkins启动的是还是用的 ...
- docker-compose 部署 Redis
信息: Docker版本($ docker --version):Docker版本18.06.1-ce,版本e68fc7a 系统信息($ cat /etc/centos-release):CentOS ...
- Android 多线程基础
需要注意几个概念:Runnable,Thread,Handler. 1. Runnable只是一个接口,里面包含run()函数.所以Runnable本身不会开启线程. 2. Thread实现Runna ...
- OpenStack环境中的NFV实践
原文链接:http://www.99cloud.net/html/2016/jiuzhouyuanchuang_1103/250.html 在开始实践之前我们首先需要了解一些NFV概念和术语. NFV ...
- 【12c OCP】最新CUUG OCP-071考试题库(49题)
49.(11-1) choose the best answer Examine the structure of the SHIPMENTS table: You want to generate ...