BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)
题意
Sol
首先不考虑\(a\)的限制
我们要求的是
\]
用常规的套路可以化到这个形式
\]
设\(kd = T\)
那么
\(\sum_{T = 1}^n \left\lfloor \frac{n}{T} \right\rfloor \left\lfloor \frac{m}{T} \right\rfloor \sum_{d \ | T} \sigma(d) \mu(\frac{T}{d})\)
然后按照套路筛出后面的卷积。
但是现在有\(a\)的限制了。。
那么可以直接离线之后树状数组维护一下。
时间复杂度:\(O(T\sqrt{n}logn)\)
约数个数和用埃氏筛两行就筛出来了
#include<bits/stdc++.h>
#define chmax(a, b) (a = (a > b ? a : b))
#define chmin(a, b) (a = (a < b ? a : b))
//#define int long long
using namespace std;
const int MAXN = 3e5 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int T, mx, mu[MAXN], phi[MAXN], prime[MAXN], tot, vis[MAXN], si[MAXN], out[MAXN], p[MAXN];
struct Query{
int N, M, a, id;
bool operator < (const Query &rhs) const {
return a < rhs.a;
}
}q[MAXN];
int comp(const Query &a, const Query &b) {
return a.id < b.id;
}
int comp2(const int &a, const int &b) {
return si[a] < si[b];
}
void Get(int N) {
for(int i = 1; i <= N; i++)
for(int j = i; j <= N; j += i) si[j] += i;
vis[1] = 1; mu[1] = 1;
for(int i = 2; i <= N; i++) {
if(!vis[i]) prime[++tot] = i, mu[i] = -1;
for(int j = 1; j <= tot && i * prime[j] <= N; j++) {
vis[i * prime[j]] = 1;
if(!(i % prime[j])) {mu[i * prime[j]] = 0; break;}
else mu[i * prime[j]] = -mu[i];
}
}
}
#define lb(x) (x & (-x))
int Tr[MAXN];
void Add(int x, int val) {
while(x <= mx) Tr[x] += val, x += lb(x);
}
int Sum(int x) {
int ans = 0;
while(x) ans += Tr[x], x -= lb(x);
return ans;
}
int solve(int n, int m) {
int rt = 0, las = 0, now;
for(int i = 1, nxt; i <= n; i = nxt + 1) {
nxt = min(m / (m / i), n / (n / i));
now = Sum(nxt);
rt += (n / i) * (m / i) * (now - las);
las = now;
}
return rt;
}
signed main() {
T = read();
for(int i = 1; i <= T; i++) {
q[i].N = read(), q[i].M = read(), q[i].a = read(), q[i].id = i;
if(q[i].N > q[i].M) swap(q[i].N, q[i].M);;
chmax(mx, q[i].N);
}
Get(mx);
for(int i = 1; i <= mx; i++) p[i] = i;
sort(p + 1, p + mx + 1, comp2);
sort(q + 1, q + T + 1);
for(int t = 1, d = 1; t <= T; t++) {
for(; d <= mx && si[p[d]] <= q[t].a; d++) {
for(int k = p[d]; k <= mx; k += p[d]) {
if(!mu[k / p[d]]) continue;
Add(k, si[p[d]] * mu[k / p[d]]);
}
}
out[q[t].id] = solve(q[t].N, q[t].M);
}
for(int i = 1; i <= T; i++)
printf("%d\n", out[i] < 0 ? out[i] + 2147483648 : out[i]);
//printf("%d\n", out[i] <);
return 0;
}
BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)的更多相关文章
- 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组
[BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...
- BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2321 Solved: 1187[Submit][Status ...
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
- BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)
题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...
- BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组
$ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...
- luogu3312 [SDOI2014]数表 (莫比乌斯反演+树状数组)
link \(\sum_{i=1}^n\sum_{j=1}^m[s(\gcd(i,j))\le a]s(\gcd(i,j))\) \(=\sum_{p=1}^ns(p)[s(p)\le a]\sum_ ...
- 【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表
Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...
- bzoj 3529 数表 莫比乌斯反演+树状数组
题目大意: 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...
- 【BZOJ3529】【SDOI2014】数表 (莫比乌斯反演+树状数组)
传送门 Description 有一张$n\times m$的数表,其第$i$行第$j$列 $(1≤i≤n,1≤j≤m)$ 的数值为能同时整除$i$和$j$的所有自然数之和.现在给定$a$,计算数表中 ...
随机推荐
- Java网络编程以及简单的聊天程序
网络编程技术是互联网技术中的主流编程技术之一,懂的一些基本的操作是非常必要的.这章主要讲解网络编程,UDP和Socket编程,以及使用Socket做一个简单的聊天软件. 全部代码下载:链接 1.网络编 ...
- Postgres中的SpinLock锁
我们知道,在数据库中为了并发控制,少不了要使用各种各样的锁(lock).PostgreSQL中也不例外. 在PostgreSQL中有三种级别的锁,他们的关系如下: |上层 RegularLock | ...
- Web安全篇之SQL注入攻击
在网上找了一篇关于sql注入的解释文章,还有很多技术,走马观花吧 文章来源:http://www.2cto.com/article/201310/250877.html ps:直接copy,格式有点问 ...
- weiFenLuo.winFormsUI.Docking.dll学习
引用方法: 1.建立一个WinForm工程,默认生成了一个WinForm窗体. 2.引用—>添加引用—>浏览—>weiFenLuo.winFormsUI.Docking.dll. 3 ...
- 《LeetBook》leetcode题解(14):Longest Common Prefix[E]
我现在在做一个叫<leetbook>的免费开源书项目,力求提供最易懂的中文思路,目前把解题思路都同步更新到gitbook上了,需要的同学可以去看看 书的地址:https://hk029.g ...
- python-广播
#!/usr/bin/python #coding=utf-8 #广播端 import sys,socket import time s=socket.socket(socket.AF_INET,so ...
- CentOS6.4将MySQL5.1升级至5.5.36
1.为了安全期间,首先需要备份原有数据 2.卸载原有MySQL,先停止原有的MySQL服务,再查找 find / -name mysql [root@qxyw /]# find / -name mys ...
- ZOJ 2971 Give Me the Number
Give Me the Number Numbers in English are written down in the following way (only numbers less than ...
- H5微信自定义分享链接(设置标题+简介+图片)
起源:最近公司在做招募广告的html5页面,然后做出来后,产品提出一个问题,需要分享出去的链接是卡片形式,内容也要自己定义,这下就难到我了,因为是第一次遇到这种需求,果断百度,然而,我就像大家一样,看 ...
- Java泛型的基本使用
Java1.5版本推出了泛型,虽然这层语法糖给开发人员带来了代码复用性方面的提升,但是这不过是编译器所做的一层语法糖,在真正生成的字节码中,这类信息却被擦除了.笔者发现很多几年开发经验的程序员,依然不 ...