P2824 [HEOI2016/TJOI2016]排序

题意:

有一个长度为\(n\)的1-n的排列\(m\)次操作

\((0,l,r)\)表示序列从\(l\)到\(r\)降序

\((1,l,r)\)表示序列从\(l\)到\(r\)升序

问最终第\(q\)位的元素

数据范围:

\(n,m<=1e5\)


二分答案神题。

我们发现维护区间排序非常困难,然后最终只是若干修改一次询问。

所以我们可以枚举第\(q\)位的是什么,然后把小于等于它的置0,大于它的置0。

这样的话,我们就可以用支持区间查询和区间覆盖的线段树维护升降序了

进一步的,我们发现第q位的数字满足单调性,于是二分答案

复杂度:\(O(nlog^2n)\)


Code:

#include <cstdio>
#define ls id<<1
#define rs id<<1|1
const int N=30010;
int dat[N<<2],lazy[N<<2],m,n,op[N],opr[N],opl[N],a[N],q;
void build(int id,int l,int r,int M)
{
lazy[id]=-1;
if(l==r)
{
dat[id]=(M<a[l]);
return;
}
int mid=l+r>>1;
build(ls,l,mid,M);
build(rs,mid+1,r,M);
dat[id]=dat[ls]+dat[rs];
}
void push_down(int id,int L,int R)
{
if(lazy[id]==-1) return;
if(L!=R)
{
int mid=L+R>>1;
dat[ls]=(mid+1-L)*lazy[id];
dat[rs]=(R-mid)*lazy[id];
lazy[ls]=lazy[rs]=lazy[id];
}
lazy[id]=-1;
}
void change(int id,int L,int R,int l,int r,int delta)
{
if(l>r) return;
push_down(id,L,R);
if(L==l&&R==r)
{
dat[id]=(r+1-l)*delta;
lazy[id]=delta;
return;
}
int mid=L+R>>1;
if(r<=mid)
change(ls,L,mid,l,r,delta);
else if(l>mid)
change(rs,mid+1,R,l,r,delta);
else
change(ls,L,mid,l,mid,delta),change(rs,mid+1,R,mid+1,r,delta);
dat[id]=dat[ls]+dat[rs];
}
int query(int id,int L,int R,int l,int r)
{
push_down(id,L,R);
if(L==l&&R==r)
return dat[id];
int mid=L+R>>1;
if(r<=mid)
return query(ls,L,mid,l,r);
else if(l>mid)
return query(rs,mid+1,R,l,r);
else
return query(ls,L,mid,l,mid)+query(rs,mid+1,R,mid+1,r);
}
bool check(int d)
{
build(1,1,n,d);
for(int i=1;i<=m;i++)
{
int cn1=query(1,1,n,opl[i],opr[i]);
int cn0=opr[i]+1-opl[i]-cn1;
if(op[i]==0)
{
change(1,1,n,opl[i],opl[i]+cn0-1,0);
change(1,1,n,opl[i]+cn0,opr[i],1);
}
else
{
change(1,1,n,opl[i],opl[i]+cn1-1,1);
change(1,1,n,opl[i]+cn1,opr[i],0);
}
}
return query(1,1,n,q,q);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",a+i);
for(int i=1;i<=m;i++)
scanf("%d%d%d",op+i,opl+i,opr+i);
scanf("%d",&q);
int l=1,r=n;
while(l<r)
{
int mid=l+r>>1;
if(check(mid))
l=mid+1;
else
r=mid;
}
printf("%d\n",l);
return 0;
}

2018.7.19

洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告的更多相关文章

  1. 洛谷$P2824\ [HEOI2016/TJOI2016]$ 排序 线段树+二分

    正解:线段树+二分 解题报告: 传送门$QwQ$ 昂着题好神噢我$jio$得$QwQQQQQ$,,, 开始看到长得很像之前考试题的亚子,,,然后仔细康康发现不一样昂$kk$,就这里范围是$[1,n]$ ...

  2. 洛谷 P4091 [HEOI2016/TJOI2016]求和 解题报告

    P4091 [HEOI2016/TJOI2016]求和 题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: \[ f(n)=\sum_{i=0}^n\ ...

  3. 洛谷 P4093 [HEOI2016/TJOI2016]序列 解题报告

    P4093 [HEOI2016/TJOI2016]序列 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一 ...

  4. [洛谷P2824][HEOI2016/TJOI2016]排序

    题目大意:一个全排列,两种操作: 1. $0\;l\;r:$把$[l,r]$升序排序2. $1\;l\;r:$把$[l,r]$降序排序 最后询问第$k$位是什么 题解:二分答案,把比这个数大的赋成$1 ...

  5. 洛谷P2824 [HEOI2016/TJOI2016]排序(线段树)

    传送门 这题的思路好清奇 因为只有一次查询,我们考虑二分这个值为多少 将原序列转化为一个$01$序列,如果原序列上的值大于$mid$则为$1$否则为$0$ 那么排序就可以用线段树优化,设该区间内$1$ ...

  6. 洛谷 P2824 [HEOI2016/TJOI2016]排序 (线段树合并)

    (另外:题解中有一种思路很高妙而且看上去可以适用一些其他情况的离线方法) 线段树合并&复杂度的简单说明:https://blog.csdn.net/zawedx/article/details ...

  7. [HEOI2016/TJOI2016] 排序 解题报告(二分答案/线段树分裂合并+set)

    题目链接: https://www.luogu.org/problemnew/show/P2824 题目描述: 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在 ...

  8. 洛谷 2824 [HEOI2016/TJOI2016]排序

    [题意概述] 对一个1到n的排列做m次区间排序,最后询问位置q上面的数. [题解] 区间排序的效率是nlogn,所以暴力做的话效率是mnlogn,显然达不到要求. 我们考虑二分答案.如果某个位置的数比 ...

  9. 洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP

    洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会 ...

随机推荐

  1. 安装完.net core sdk 后部署 ASP.NET Core 出现错误502.5

    将项目升级到和sdk一样的版本 然后 命令行执行 iisreset

  2. 使用idea写ssm的时候提示源文件夹中的文件找不到

    <context:property-placeholder location="classpath:db.properties"/>这一行idea提示找不到db.pro ...

  3. linux系统CPU内存磁盘监控发送邮件脚本

    #!/bin/bashexport PATHexport LANG=zh_CN.UTF-8###top之后输入数字1,可以查看每颗CPU的情况.###先配置好mailx邮箱账号密码:#cat>/ ...

  4. 转载-找圆算法((HoughCircles)总结与优化-霍夫变换

    原文链接: http://www.opencv.org.cn/forum.php?mod=viewthread&tid=34096   找圆算法((HoughCircles)总结与优化 Ope ...

  5. K-近邻算法入门

    K-近邻算法的直观理解就是:给定一个训练集合,对于新的实例,在训练集合中找到k个与该实例最近的邻居,然后根据“少数服从多数”原则判断该实例归属于哪一类,又称“随大流” K-近邻算法的三大要素:K值得选 ...

  6. CentOS 6.7下创建桌面快捷方式

    CentOS 6.7下创建桌面快捷方式如下: 1 在桌面右键,选择“创建启动器" 2 在弹出菜单中,填写名称(显示在桌面上的名字),命令(可执行程序的路径) 3 点击弹出菜单左边的图标,选择 ...

  7. 《linux内核分析》 第一周

    20135130  王川东 计算机是如何工作的? 计算机的基本原理是存储程序和程序控制.预先要把指挥计算机如何进行操作的指令序列(称为程序)和原始数据通过输入设备输送到计算机内存贮器中.每一条指令中明 ...

  8. WebSphere Application Server诊断和调优

    近段时间,我们项目中用到的WebSphere应用服务器(WAS),但在客户的production环境下极不稳定,经常宕机.给客户造成非常不好的影响,同时,也给项目组很大压力.为此,我们花了近一个月时间 ...

  9. 领悟JavaScript面向对象

    JavaScript 是面向对象的.但是不少人对这一点理解得并不全面. 在 JavaScript 中,对象分为两种.一种可以称为“普通对象”,就是我们所普遍理解的那些:数字.日期.用户自定义的对象(如 ...

  10. git找回当前目录下误删的所有文件

    git checkout . 参考:http://opentechschool.github.io/social-coding/extras/delete-restore.html