点击打开链接

题意:

按顺序给出一小岛(多边形)的点

求岛上某点离海最远的距离

解法:

不断的收缩多边形(求半平面交)

直到无限小

二分收缩的距离即可

如图

//大白p263
#include <cmath>
#include <cstdio>
#include <cstring>
#include <string>
#include <queue>
#include <functional>
#include <set>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const double eps=1e-7;//精度
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
int dcmp(double x){//判断double等于0或。。。
if(fabs(x)<eps)return 0;else return x<0?-1:1;
}
struct Point{
double x,y;
Point(double x=0,double y=0):x(x),y(y){}
};
typedef Point Vector;
typedef vector<Point> Polygon;
Vector operator+(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}//向量+向量=向量
Vector operator-(Point a,Point b){return Vector(a.x-b.x,a.y-b.y);}//点-点=向量
Vector operator*(Vector a,double p){return Vector(a.x*p,a.y*p);}//向量*实数=向量
Vector operator/(Vector a,double p){return Vector(a.x/p,a.y/p);}//向量/实数=向量
bool operator<( const Point& A,const Point& B ){return dcmp(A.x-B.x)<0||(dcmp(A.x-B.x)==0&&dcmp(A.y-B.y)<0);}
bool operator==(const Point&a,const Point&b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;}
bool operator!=(const Point&a,const Point&b){return a==b?false:true;}
struct Segment{
Point a,b;
Segment(){}
Segment(Point _a,Point _b){a=_a,b=_b;}
bool friend operator<(const Segment& p,const Segment& q){return p.a<q.a||(p.a==q.a&&p.b<q.b);}
bool friend operator==(const Segment& p,const Segment& q){return (p.a==q.a&&p.b==q.b)||(p.a==q.b&&p.b==q.a);}
};
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point _c, double _r):c(_c),r(_r) {}
Point point(double a)const{return Point(c.x+cos(a)*r,c.y+sin(a)*r);}
bool friend operator<(const Circle& a,const Circle& b){return a.r<b.r;}
};
struct Line{
Point p;
Vector v;
double ang;
Line() {}
Line(const Point &_p, const Vector &_v):p(_p),v(_v){ang = atan2(v.y, v.x);}
bool operator<(const Line &L)const{return ang < L.ang;}
};
double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}//|a|*|b|*cosθ 点积
double Length(Vector a){return sqrt(Dot(a,a));}//|a| 向量长度
double Angle(Vector a,Vector b){return acos(Dot(a,b)/Length(a)/Length(b));}//向量夹角θ
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}//叉积 向量围成的平行四边形的面积
double Area2(Point a,Point b,Point c){return Cross(b-a,c-a);}//同上 参数为三个点
double DegreeToRadius(double deg){return deg/180*PI;}
double GetRerotateAngle(Vector a,Vector b){//向量a顺时针旋转theta度得到向量b的方向
double tempa=Angle(a,Vector(1,0));
if(a.y<0) tempa=2*PI-tempa;
double tempb=Angle(b,Vector(1,0));
if(b.y<0) tempb=2*PI-tempb;
if((tempa-tempb)>0) return tempa-tempb;
else return tempa-tempb+2*PI;
}
double torad(double deg){return deg/180*PI;}//角度化为弧度
Vector Rotate(Vector a,double rad){//向量逆时针旋转rad弧度
return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
Vector Normal(Vector a){//计算单位法线
double L=Length(a);
return Vector(-a.y/L,a.x/L);
}
Point GetLineProjection(Point p,Point a,Point b){//点在直线上的投影
Vector v=b-a;
return a+v*(Dot(v,p-a)/Dot(v,v));
}
Point GetLineIntersection(Point p,Vector v,Point q,Vector w){//求直线交点 有唯一交点时可用
Vector u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
}
int ConvexHull(Point* p,int n,Point* sol){//计算凸包
sort(p,p+n);
int m=0;
for(int i=0;i<n;i++){
while(m>1&&Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2])<=0) m--;
sol[m++]=p[i];
}
int k=m;
for(int i=n-2;i>=0;i--){
while(m>k&&Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2])<=0) m--;
sol[m++]=p[i];
}
if(n>0) m--;
return m;
}
double Heron(double a,double b,double c){//海伦公式
double p=(a+b+c)/2;
return sqrt(p*(p-a)*(p-b)*(p-c));
}
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){//线段规范相交判定
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1);
double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
}
double CutConvex(const int n,Point* poly, const Point a,const Point b, vector<Point> result[3]){//有向直线a b 切割凸多边形
vector<Point> points;
Point p;
Point p1=a,p2=b;
int cur,pre;
result[0].clear();
result[1].clear();
result[2].clear();
if(n==0) return 0;
double tempcross;
tempcross=Cross(p2-p1,poly[0]-p1);
if(dcmp(tempcross)==0) pre=cur=2;
else if(tempcross>0) pre=cur=0;
else pre=cur=1;
for(int i=0;i<n;i++){
tempcross=Cross(p2-p1,poly[(i+1)%n]-p1);
if(dcmp(tempcross)==0) cur=2;
else if(tempcross>0) cur=0;
else cur=1;
if(cur==pre){
result[cur].push_back(poly[(i+1)%n]);
}
else{
p1=poly[i];
p2=poly[(i+1)%n];
p=GetLineIntersection(p1,p2-p1,a,b-a);
points.push_back(p);
result[pre].push_back(p);
result[cur].push_back(p);
result[cur].push_back(poly[(i+1)%n]);
pre=cur;
}
}
sort(points.begin(),points.end());
if(points.size()<2){
return 0;
}
else{
return Length(points.front()-points.back());
}
}
double DistanceToSegment(Point p,Segment s){//点到线段的距离
if(s.a==s.b) return Length(p-s.a);
Vector v1=s.b-s.a,v2=p-s.a,v3=p-s.b;
if(dcmp(Dot(v1,v2))<0) return Length(v2);
else if(dcmp(Dot(v1,v3))>0) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
}
bool isPointOnSegment(Point p,Segment s){
return dcmp(Cross(s.a-p,s.b-p))==0&&dcmp(Dot(s.a-p,s.b-p))<0;
}
int isPointInPolygon(Point p, Point* poly,int n){//点与多边形的位置关系
int wn=0;
for(int i=0;i<n;i++){
Point& p2=poly[(i+1)%n];
if(isPointOnSegment(p,Segment(poly[i],p2))) return -1;//点在边界上
int k=dcmp(Cross(p2-poly[i],p-poly[i]));
int d1=dcmp(poly[i].y-p.y);
int d2=dcmp(p2.y-p.y);
if(k>0&&d1<=0&&d2>0)wn++;
if(k<0&&d2<=0&&d1>0)wn--;
}
if(wn) return 1;//点在内部
else return 0;//点在外部
}
double PolygonArea(Point* p,int n){//多边形有向面积
double area=0;
for(int i=1;i<n-1;i++)
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2;
}
int GetLineCircleIntersection(Line L,Circle C,Point& p1,Point& p2){//圆与直线交点 返回交点个数
double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y-C.c.y;
double e = a*a + c*c, f = 2*(a*b+c*d), g = b*b + d*d -C.r*C.r;
double delta = f*f - 4*e*g;
if(dcmp(delta) < 0) return 0;//相离
if(dcmp(delta) == 0) {//相切
p1=p1=C.point(-f/(2*e));
return 1;
}//相交
p1=(L.p+L.v*(-f-sqrt(delta))/(2*e));
p2=(L.p+L.v*(-f+sqrt(delta))/(2*e));
return 2;
}
double rotating_calipers(Point *ch,int n)//旋转卡壳
{
int q=1;
double ans=0;
ch[n]=ch[0];
for(int p=0;p<n;p++)
{
while(Cross(ch[q+1]-ch[p+1],ch[p]-ch[p+1])>Cross(ch[q]-ch[p+1],ch[p]-ch[p+1]))
q=(q+1)%n;
ans=max(ans,max(Length(ch[p]-ch[q]),Length(ch[p+1]-ch[q+1])));
}
return ans;
}
Polygon CutPolygon(Polygon poly,Point a,Point b){//用a->b切割多边形 返回左侧
Polygon newpoly;
int n=poly.size();
for(int i=0;i<n;i++){
Point c=poly[i];
Point d=poly[(i+1)%n];
if(dcmp(Cross(b-a,c-a))>=0) newpoly.push_back(c);
if(dcmp(Cross(b-a,c-d))!=0){
Point ip=GetLineIntersection(a,b-a,c,d-c);
if(isPointOnSegment(ip,Segment(c,d))) newpoly.push_back(ip);
}
}
return newpoly;
}
int GetCircleCircleIntersection(Circle c1,Circle c2,Point& p1,Point& p2){//求两圆相交
double d=Length(c1.c-c2.c);
if(dcmp(d)==0){
if(dcmp(c1.r-c2.r)==0) return -1;//两圆重合
return 0;
}
if(dcmp(c1.r+c2.r-d)<0) return 0;
if(dcmp(fabs(c1.r-c2.r)-d)>0) return 0;
double a=Angle(c2.c-c1.c,Vector(1,0));
double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));
p1=c1.point(a-da);p2=c1.point(a+da);
if(p1==p2) return 1;
return 2;
}
bool isPointOnleft(Point p,Line L){return dcmp(Cross(L.v,p-L.p))>0;}
int HalfplaneIntersection(Line *L,int n,Point* poly){//半平面交
sort(L,L+n);
int first,last;
Point* p=new Point[n];
Line* q=new Line[n];
q[first=last=0]=L[0];
for(int i=1;i<n;i++){
while(first<last&&!isPointOnleft(p[last-1],L[i])) last--;
while(first<last&&!isPointOnleft(p[first],L[i])) first++;
q[++last]=L[i];
if(dcmp(Cross(q[last].v,q[last-1].v))==0){
last--;
if(isPointOnleft(L[i].p,q[last])) q[last]=L[i];
}
if(first<last) p[last-1]=GetLineIntersection(q[last-1].p,q[last-1].v,q[last].p,q[last].v);
}
while(first<last&&!isPointOnleft(p[last-1],q[first])) last--;
if(last-first<=1) return 0;
p[last]=GetLineIntersection(q[last].p,q[last].v,q[first].p,q[first].v);
int m=0;
for(int i=first;i<=last;i++) poly[m++]=p[i];
return m;
}
//两点式化为一般式A = b.y-a.y, B = a.x-b.x, C = -a.y*(B)-a.x*(A);
//--------------------------------------
//--------------------------------------
//--------------------------------------
//--------------------------------------
//--------------------------------------
Point p[200],poly[200];
Line L[200];
Vector v[200],v2[200];
int main(){
int n;
while(scanf("%d",&n)&&n){
int m,x,y;
for(int i=0;i<n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
for(int i=0;i<n;i++){
v[i]=p[(i+1)%n]-p[i];
v2[i]=Normal(v[i]);
}
double left=0,right=20000;
while(dcmp(right-left)>0){
double mid=left+(right-left)/2;
for(int i=0;i<n;i++) L[i]=Line(p[i]+v2[i]*mid,v[i]);
m=HalfplaneIntersection(L,n,poly);
if(!m) right=mid;
else left=mid;
}
printf("%.6lf\n",left);
}
return 0;
}

1396 - Most Distant Point from the Sea的更多相关文章

  1. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  2. uva 1396 - Most Distant Point from the Sea

    半平面的交,二分的方法: #include<cstdio> #include<algorithm> #include<cmath> #define eps 1e-6 ...

  3. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  4. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  5. 【POJ】【3525】Most Distant Point from the Sea

    二分+计算几何/半平面交 半平面交的学习戳这里:http://blog.csdn.net/accry/article/details/6070621 然而这题是要二分长度r……用每条直线的距离为r的平 ...

  6. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  7. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  8. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  9. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

随机推荐

  1. Android SQLite系列

    转:http://blog.csdn.net/liuhe688/article/details/6715983 Android中如何使用SQLite. 现在的主流移动设备像Android.iPhone ...

  2. 修改host文件的P处理

    notepad C:\WINDOWS\system32\drivers\etc\hosts 用文档创建hosts文件,添加上面代码.把文件后缀修改为 .bat 就不用每次很麻烦的查找host文件了.

  3. nodejs 文件查找中文,替换为英文

    帮以前同事解决一个需求,中文项目 翻译 英文项目~~~ 考虑到具体实现方面的问题,如果智能的话,肯定是要做中文的语法分析,不过感觉这个有难度. 所以最后的方案是遍历文件,将中文短语匹配出来,再进行人工 ...

  4. B2C 电商网站需要怎样的 ERP 系统

    B2C 电商网站需要怎样的 ERP 系统 主要由如下一些系统组成:1.进销存系统,你的产品的采供销当然最好是由系统来实现:2.BI系统,BI包括所有的流量.订单.商品.库存.发货等所有数据节点,亦包含 ...

  5. Linux宕机最安全的重启方法(你肯定不知道)

    Linux 内核虽然号称“不死族”,几乎不会崩溃或者死机,但是特殊情况下,还是有一定几率会宕机的.因为 Linux 广泛用于生产环境,所以每一次宕机都会引起相当大的损失.本文介绍在它死机至后,一种温柔 ...

  6. Adobe Acrobat XI Pro 官方下载及安装破解

    Adobe公司推出的PDF 格式是一种全新的电子文档格式.借助 Acrobat ,您几乎可以用便携式文档格式 (Portable Document Format ,简称 PDF) 出版所有的文档. P ...

  7. ViewTreeObserver简介

    Android ViewTreeObserver简介 一.结构 public final class ViewTreeObserver extends Object java.lang.Object ...

  8. [原]性能优化之Hibernate缓存讲解、应用和调优

    近来坤哥推荐我我们一款性能监控.调优工具--JavaMelody,通过它让我觉得项目优化是看得见摸得着的,优化有了针对性.而无论是对于分布式,还是非分布,缓存是提示性能的有效工具. 数据层是EJB3. ...

  9. javascript函数的基础功能

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  10. js 事件之 createEvent、dispatchEvent

    //document上绑定自定义事件ondataavailable document.addEventListener('customevent', function(event) { alert(e ...