DP 动态规划
p1269 马棚
题目:
每天,小明和他的马外出,然后他们一边跑一边玩耍。当他们结束的时候,必须带所有的马返回马棚,小明有K个马棚。他把他的马排成一排然后跟随它走向马棚,因为他们非常疲劳,小明不想让他的马做过多的移动。因此他想了一个办法:将马按照顺序放在马棚中,后面的马放的马棚的序号不会大于前面的马放的马棚的序号。而且,他不想他的K个马棚中任何一个空置,也不想任何一匹马在外面。已知共有黑、白两种马,而且它们相处得并不十分融洽。如果有i个白马和j个黑马在一个马棚中,那么这个马棚的不愉快系数将是i*j。所有k个马棚不愉快系数的和就是系数总和。确定一种方法把n匹马放入k个马棚,使得系数总和最小。
输入:
在第一行有两个数字:n(1≤n≤500)和k(1≤k≤n)。在接下来的n行是n个数。在这些行中的第i行代表队列中的第i匹马的颜色:1意味着马是黑色的,0意味着马是白色的。
6 3
1
1
0
1
0
1
{6匹马,3个马棚}
{第1匹马为黑马}
{第3匹马为白马}
输出:只输出一个单一的数字,代表系数总和可能达到的最小值
2 {最小系数总和}
这道题我是先直接求出从牧场i到j的不愉快值,然后再用DP状态转移f[i][j]=min(f[i][j],f[i-1][k]+b[k+1][j]);然后输出f[k][n]就好了
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<ctime>
using namespace std;
int a[];
int f[][];
int b[][];
int main()
{
int n,k;
cin>>n>>k;
memset(f,,sizeof(f));
for(int i=;i<=n;i++)
cin>>a[i];
int bl,w;
for(int i=;i<=n;i++)
{
for(int j=i;j<=n;j++)
{
bl=;w=;
for(int k=i;k<=j;k++)
{
if(a[k]==)
{
bl++;
}
if(a[k]==)
{
w++;
}
}
b[i][j]=bl*w;
}
}
for(int i=;i<=n;i++)
{
f[][i]=b[][i];
}
/*for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
cout<<f[i][j]<<' ';
}
cout<<endl;
}*/
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
for(int k=;k<=j;k++)
{
f[i][j]=min(f[i][j],f[i-][k]+b[k+][j]);
}
}
}
/*for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
cout<<f[i][j]<<' ';
}
cout<<endl;
}*/
cout<<f[k][n]<<endl;
return ;
}
DP 动态规划的更多相关文章
- Day 5 笔记 dp动态规划
Day 5 笔记 dp动态规划 一.动态规划的基本思路 就是用一些子状态来算出全局状态. 特点: 无后效性--狗熊掰棒子,所以滚动什么的最好了 可以分解性--每个大的状态可以分解成较小的步骤完成 dp ...
- (转)dp动态规划分类详解
dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...
- 【模板整合计划】DP动态规划
[模板整合计划]DP动态规划 一:[背包] 1.[01背包] 采药 \([P1048]\) #include<algorithm> #include<cstdio> int T ...
- DP动态规划学习笔记——高级篇上
说了要肝的怎么能咕咕咕呢? 不了解DP或者想从基础开始学习DP的请移步上一篇博客:DP动态规划学习笔记 这一篇博客我们将分为上中下三篇(这样就不用咕咕咕了...),上篇是较难一些树形DP,中篇则是数位 ...
- 树形DP——动态规划与数据结构的结合,在树上做DP
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是算法与数据结构的第15篇,也是动态规划系列的第4篇. 之前的几篇文章当中一直在聊背包问题,不知道大家有没有觉得有些腻味了.虽然经典的文 ...
- [原]POJ1141 Brackets Sequence (dp动态规划,递归)
本文出自:http://blog.csdn.net/svitter 原题:http://poj.org/problem?id=1141 题意:输出添加括号最少,并且使其匹配的串. 题解: dp [ i ...
- DP动态规划练习
先来看一下经典的背包问题吧 http://www.cnblogs.com/Kalix/p/7617856.html 01背包问题 https://www.cnblogs.com/Kalix/p/76 ...
- 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 摆花 (DP动态规划)
2012_p3 摆花 (flower.cpp/c/pas) 时间限制: 1 Sec 内存限制: 128 MB提交: 17 解决: 10[提交][状态][讨论版][命题人:外部导入] 题目描述 3. ...
- DP动态规划学习笔记
作为考察范围最广,考察次数最多的算法,当然要开一篇博客来复习啦. 子曰:温故而知新,可以为师矣 我复习DP时有一些自己对DP的理解,也就分享出来吧. ——正片开始—— 动态规划算法,即Dynamic ...
随机推荐
- 【Xilinx-Petalinux学习】-01-开发环境搭建与PetaLinux的安装
开发环境 VMware12, Ubuntu 16.04 64 bit 在VMware中安装Ubuntu,用户名:xilinx-arm 密码:root step1: VMware Tools问题 不知道 ...
- Oracle数据库常用技术
一.视图(重点) 什么是视图? ·视图由一个或多个表(或视图)中提取数据而成 ·视图是一种虚拟表 ·视图一经创建,可以当作表来使用. 使用视图的好处? · 简化复杂数据查询 · 提高运行效率 · 屏蔽 ...
- SQL数据库置疑修复
SQL数据库置疑修复 首先分析数据库置疑的原因,查明原因分析数据库置疑修复的方法,解决置疑后,考虑数据库置疑的预防方案. 数据库置疑产生的原因: 1.sql所在分区空间是否够?数据库文件大小是否达 ...
- zabbix3.0.4 部署History
[root@zabbix-Test ~]# history 1 passwd root 2 exit 3 yum install ntpd* 4 yum inst ...
- ANT编译时执行Junit测试
1.Junit.jar(和jakarta-ant-optional.jar 不是必须) 放在ant_home/lib中,用于支持build.xml中的<junit>标签 2.修改build ...
- iOS 开源库 之 AFNetWorking 2.x
1. 网络请求的基本知识 2. Get/Post 请求的使用 3. 文件(图片)上传 4. 断点下载 5. 其它使用细节 6. 设计优良的地方
- js原生设计模式——8单例模式
1.单例模式——在js中就是指的单个对象,可用于命名空间声明 2.示例 <!DOCTYPE html><html lang="en"><head> ...
- HTTP协议缓存策略深入详解之ETAG妙用
Etag是什么: Etag 是URL的Entity Tag,用于标示URL对象是否改变,区分不同语言和Session等等.具体内部含义是使服务器控制的,就像Cookie那样. HTTP协议规格说明定义 ...
- Boost.Asio技术文档
Christopher Kohlhoff Copyright © 2003-2012 Christopher M. Kohlhoff 以Boost1.0的软件授权进行发布(见附带的LICENSE_1_ ...
- iOS 环信消息撤回
这两天在做环信的消息回撤,在网上找了许久没有这种案例,之后官方的一些方法,但是自己做,还是需要花点时间去整理,所以我决定等我把这个做好之后,分享给大家,如果做的不好多多指教,谢谢- 首先要实现消息撤回 ...