笔记-Cats Transport<已写题解>
笔记-Cats Transport
令 \(D_i=\sum_{j=1}^id_i\),\(T_i=t_i-D_{h_i}\)。
为 \(T_i\) 从小到大排序,令 \(s_i=\sum_{j=1}^iT_j\)。
设 \(f_{a,i}\) 表示第 \(a\) 个人带走猫子 \(i\) 的 \(1\sim i\) 号猫子最小等待时间之和。
设第 \(a-1\) 个人带走了第 \(j\) 个猫子,所以第 \(a\) 个人带走了第 \(j+1\sim i\) 个猫子。
所以递推式:
f_{a,i}=&\min\{f_{a-1,j}+T_i(i-j)-(s_i-s_j)\}\\
f_{a,i}=&f_{a-1,j}+T_i(i-j)-(s_i-s_j)\\
f_{a,i}=&f_{a-1,j}+iT_i-jT_i-s_i+s_j\\
f_{a-1,j}+s_j=&T_i\cdot j+f_{a,i}+s_i-iT_i\\
\end{split}
\\
\begin{cases}
y=f_{a-1,j}+s_j\\
k=T_i\\
x=j\\
b=f_{a,i}+s_i-iT_i\\
\end{cases}
\\
\Large y=kx+b
\]
搞定。
Code
#include <bits/stdc++.h>
using namespace std;
//Start
#define re register
#define il inline
#define mk make_pair
#define pb push_back
#define db double
#define lng long long
#define fi first
#define se second
const int inf=0x3f3f3f3f;
const lng INF=0x3f3f3f3f3f3f3f3f;
//Data
const int N=100000,P=100;
int n,m,p;
lng d[N+7],t[N+7],s[N+7];
//DP
lng f[P+7][N+7];
pair<int,int> lor[P+7];
int q[P+7][N+7];
#define l(x) lor[x].fi
#define r(x) lor[x].se
il db X(re int a,re int j){
return j;
}
il db Y(re int a,re int j){
return f[a][j]+s[j];
}
il db slope(re int a,re int k,re int t){
return (Y(a,k)-Y(a,t))/(X(a,k)-X(a,t));
}
il lng F(re int a,re int i,re int j){
return f[a-1][j]+t[i]*(i-j)-(s[i]-s[j]);
}
il lng DP(){
for(re int a=0;a<=p;a++){
lor[a]=mk(1,0);
q[a][++r(a)]=0;
}
for(re int a=1;a<=p;a++){
for(re int i=1;i<=m;i++){
// printf("(%d,%d)\n",a,i);
while(l(a-1)<r(a-1)&&slope(a-1,q[a-1][l(a-1)],q[a-1][l(a-1)+1])<=t[i]) l(a-1)++;
f[a][i]=F(a,i,q[a-1][l(a-1)]);
while(l(a)<r(a)&&slope(a,q[a][r(a)-1],q[a][r(a)])>=slope(a,q[a][r(a)],i)) r(a)--;
q[a][++r(a)]=i;
}
}
return f[p][m];
}
//Main
int main(){
scanf("%d%d%d",&n,&m,&p);
if(p>=m) return puts("0"),0;
for(re int i=2,x;i<=n;i++){
scanf("%d",&x);
d[i]=d[i-1]+x;
}
for(re int i=1,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
t[i]=-d[x]+y;
}
sort(t+1,t+m+1);
for(re int i=1;i<=m;i++) s[i]=s[i-1]+t[i];
printf("%lld\n",DP());
return 0;
}
\]
笔记-Cats Transport<已写题解>的更多相关文章
- 【题解】Cats Transport (斜率优化+单调队列)
[题解]Cats Transport (斜率优化+单调队列) # When Who Problem Lang Verdict Time Memory 55331572 Jun/09/2019 19:1 ...
- 题解-Cats Transport
题解-Cats Transport Cats Transport 有 \(n\) 个山丘,\(m\) 只猫子,\(p\) 只铲屎官.第 \(i-1\) 个山丘到第 \(i\) 个山丘的距离是 \(d_ ...
- CF311B Cats Transport 斜率优化DP
题面:CF311B Cats Transport 题解: 首先我们观察到山与距离其实是没有什么用的,因为对于任意一只猫,我们都可以直接算出如果有一个人要恰好接走它,需要在哪一时刻出发,我们设第i只猫对 ...
- Codeforces 311B Cats Transport 斜率优化dp
Cats Transport 出发时间居然能是负的,我服了... 卡了我十几次, 我一直以为斜率优化写搓了. 我们能得出dp方程式 dp[ i ][ j ] = min(dp[ k ][ j - 1 ...
- TCP/IP详解学习笔记 这位仁兄写得太好了.(转载)
TCP/IP详解学习笔记 这位仁兄写得太好了 TCP/IP详解学习笔记 这位仁兄写得太好了. http://blog.csdn.net/goodboy1881/category/20444 ...
- 向已写好的多行插入sql语句中添加字段和值
#region 添加支款方式--向已写好的多行插入sql语句中添加字段和值 public int A_ZhifuFS(int diqu) { ; string strData = @"SEL ...
- 一本通1609【例 4】Cats Transport
1609:[例 4]Cats Transport 时间限制: 1000 ms 内存限制: 524288 KB sol:非常偷懒的截图了事 注意:只能猫等人,不能人等猫 对于每只猫,我们 ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
随机推荐
- java服务器部署开源项目(若依)
1准备工作 (1)阿里云 centos_8_0_x64_20G_alibase_20200218.vhd [root@iZ2zeeqw5fxmm9zagf439aZ ~]# cat /etc/redh ...
- 《GNU_Makefile》——第3章,Makefile总述
1.makefile的内容 一个完整的makefile包含5个东西: 显示规则,隐含规则,变量定义,指示符,注释 (1)显示规则 描述如何更新目标文件. (2)隐含规则 make程序内置的规则. ma ...
- python dvwa布尔盲注自动化脚本(level=low)
仅供学习代码参考 1#python dvwa布尔盲注自动化脚本 2 import requests 3 import string 4 import time 5 INIT_URL="htt ...
- php递归无限查询上级或者下级
$this->get_array($user['uid'],1); function get_array($user_id,$top=0){ $sql = 'SELECT * FROM ' . ...
- 【建议收藏】阿里P7总结的Spring注解笔记,把组件注册讲的明明白白
环境搭建 注解的方式是通过配置类的方式来注入组件,注解注入要比XML注入的方式简单,注解注入也需要在前者的基础上,添加一个spring-context的包,也是实际开发中常用的方式. 准备所需Jar包 ...
- 2016湖南省赛 A 2016 题解(同余)
题目链接 题目大意 给出正整数 n 和 m,统计满足以下条件的正整数对 (a, b) 的数量: 1<=a<=n 1<=b<=m a*b%2016=0 题目思路 我本来以为是容斥 ...
- 【mq读书笔记】消息确认(失败消息,定时队列重新消费)
接上文的集群模式,监听器返回RECONSUME_LATER,需要将将这些消息发送给Broker延迟消息.如果发送ack消息失败,将延迟5s后提交线程池进行消费. 入口:ConsumeMessageCo ...
- LeetCode 039 Combination Sum
题目要求:Combination Sum Given a set of candidate numbers (C) and a target number (T), find all unique c ...
- CentOS 7下安装Docker
安装一些必要的系统工具: sudo yum install -y yum-utils device-mapper-persistent-data lvm2 添加软件源信息: sudo yum-conf ...
- TextClip的list和search方法报错:UnicodeDecodeError: utf-8 codec canot decode byte 0xb7 in position 8
☞ ░ 前往老猿Python博文目录 ░ 由于moviepy对多语言环境支持存在一些问题,因此在执行TextClip.list('font')和TextClip.search('GB','font') ...