(二)基于shard-jdbc中间件,实现数据分库分表
基于shard-jdbc中间件,实现数据分库分表
Sharding-JDBC简介
Sharding-JDBC定位为轻量级 Java 框架,在 Java 的 JDBC 层提供的额外服务。 它使用客户端直连数据库,以 jar 包形式提供服务,无需额外部署和依赖,可理解为增强版的 JDBC 驱动,完全兼容 JDBC 和各种 ORM 框架。
- 适用于任何基于 JDBC 的 ORM 框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template 或直接使用 JDBC。
- 支持任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP 等。
- 支持任意实现JDBC规范的数据库。目前支持 MySQL,Oracle,SQLServer,PostgreSQL 以及任何遵循 SQL92 标准的数据库。
Sharding配置示意图
简单的理解如下图,对sharding-jdbc进行配置,其实就是对所有需要进行分片的表进行配置。对表的配置,则主要是对分库的配置和分表的配置。这里可以只分库不分表,或者只分表不分库,或者同时包含分库和分表逻辑。
1、水平分割
1.1 水平分库
1)、概念:
以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中。
2)、结果
每个库的结构都一样;数据都不一样;
所有库的并集是全量数据;
1.2 水平分表
1)、概念
以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中。
2)、结果
每个表的结构都一样;数据都不一样;
所有表的并集是全量数据;
2、Shard-jdbc中间件
2.1 架构图
2.2 特点
- Sharding-JDBC直接封装JDBC API,旧代码迁移成本几乎为零。
- 适用于任何基于Java的ORM框架,如Hibernate、Mybatis等 。
- 可基于任何第三方的数据库连接池,如DBCP、C3P0、 BoneCP、Druid等。
- 以jar包形式提供服务,无proxy代理层,无需额外部署,无其他依赖。
- 分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。
- SQL解析功能完善,支持聚合、分组、排序、limit、or等查询。
3、项目案例
3.1 项目结构
springboot 2.0 版本
druid 1.1.13 版本
sharding-jdbc 3.1 版本
3.2 数据库配置
一台基础库映射(shard_one)
两台库做分库分表(shard_two,shard_three)。
表使用:table_one,table_two
3.3 核心代码块
3.3.1 数据源配置文件
spring:
datasource:
# 数据源:shard_one
dataOne:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_one?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
# 数据源:shard_two
dataTwo:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_two?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
# 数据源:shard_three
dataThree:
type: com.alibaba.druid.pool.DruidDataSource
druid:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/shard_three?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
username: root
password: 123
initial-size: 10
max-active: 100
min-idle: 10
max-wait: 60000
pool-prepared-statements: true
max-pool-prepared-statement-per-connection-size: 20
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 300000
max-evictable-idle-time-millis: 60000
validation-query: SELECT 1 FROM DUAL
# validation-query-timeout: 5000
test-on-borrow: false
test-on-return: false
test-while-idle: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
3.3.2 数据库分库策略
/**
* 数据库映射计算
*/
public class DataSourceAlg implements PreciseShardingAlgorithm<String> {
private static Logger LOG = LoggerFactory.getLogger(DataSourceAlg.class);
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分库算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "ds_" + ((hash % 2) + 2) ;
}
}
3.3.3 数据表1分表策略
/**
* 分表算法
*/
public class TableOneAlg implements PreciseShardingAlgorithm<String> {
private static Logger LOG = LoggerFactory.getLogger(TableOneAlg.class);
/**
* 该表每个库分5张表
*/
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分表算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "table_one_" + (hash % 5+1);
}
}
3.3.4 数据表2分表策略
/**
* 分表算法
*/
public class TableTwoAlg implements PreciseShardingAlgorithm<String> {
private static Logger LOG = LoggerFactory.getLogger(TableTwoAlg.class);
/**
* 该表每个库分5张表
*/
@Override
public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
LOG.debug("分表算法参数 {},{}",names,value);
int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
return "table_two_" + (hash % 5+1);
}
}
3.3.5 数据源集成配置
/**
* 数据库分库分表配置
*/
@Configuration
public class ShardJdbcConfig {
// 省略了 druid 配置,源码中有
/**
* Shard-JDBC 分库配置
*/
@Bean
public DataSource dataSource (@Autowired DruidDataSource dataOneSource,
@Autowired DruidDataSource dataTwoSource,
@Autowired DruidDataSource dataThreeSource) throws Exception {
ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration();
shardJdbcConfig.getTableRuleConfigs().add(getTableRule01());
shardJdbcConfig.getTableRuleConfigs().add(getTableRule02());
shardJdbcConfig.setDefaultDataSourceName("ds_0");
Map<String,DataSource> dataMap = new LinkedHashMap<>() ;
dataMap.put("ds_0",dataOneSource) ;
dataMap.put("ds_2",dataTwoSource) ;
dataMap.put("ds_3",dataThreeSource) ;
Properties prop = new Properties();
return ShardingDataSourceFactory.createDataSource(dataMap, shardJdbcConfig, new HashMap<>(), prop);
}
/**
* Shard-JDBC 分表配置
*/
private static TableRuleConfiguration getTableRule01() {
TableRuleConfiguration result = new TableRuleConfiguration();
result.setLogicTable("table_one");
result.setActualDataNodes("ds_${2..3}.table_one_${1..5}");
result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableOneAlg()));
return result;
}
private static TableRuleConfiguration getTableRule02() {
TableRuleConfiguration result = new TableRuleConfiguration();
result.setLogicTable("table_two");
result.setActualDataNodes("ds_${2..3}.table_two_${1..5}");
result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableTwoAlg()));
return result;
}
}
3.3.6 测试代码执行流程
@RestController
public class ShardController {
@Resource
private ShardService shardService ;
/**
* 1、建表流程
*/
@RequestMapping("/createTable")
public String createTable (){
shardService.createTable();
return "success" ;
}
/**
* 2、生成表 table_one 数据
*/
@RequestMapping("/insertOne")
public String insertOne (){
shardService.insertOne();
return "SUCCESS" ;
}
/**
* 3、生成表 table_two 数据
*/
@RequestMapping("/insertTwo")
public String insertTwo (){
shardService.insertTwo();
return "SUCCESS" ;
}
/**
* 4、查询表 table_one 数据
*/
@RequestMapping("/selectOneByPhone/{phone}")
public TableOne selectOneByPhone (@PathVariable("phone") String phone){
return shardService.selectOneByPhone(phone);
}
/**
* 5、查询表 table_one 数据
*/
@RequestMapping("/selectTwoByPhone/{phone}")
public TableTwo selectTwoByPhone (@PathVariable("phone") String phone){
return shardService.selectTwoByPhone(phone);
}
}
(二)基于shard-jdbc中间件,实现数据分库分表的更多相关文章
- CRL快速开发框架系列教程十一(大数据分库分表解决方案)
本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...
- SpringBoot 2.0 整合sharding-jdbc中间件,实现数据分库分表
一.水平分割 1.水平分库 1).概念: 以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中. 2).结果 每个库的结构都一样:数据都不一样: 所有库的并集是全量数据: 2.水平分表 1).概 ...
- 重磅来袭,使用CRL实现大数据分库分表方案
关于分库分表方案详细介绍 http://blog.csdn.net/bluishglc/article/details/7696085 这里就不作详细描述了 分库分表方案基本脱离不了这个结构,受制于实 ...
- mysql分库分表(二)
mysql分库分表 参考: https://www.cnblogs.com/dongruiha/p/6727783.html https://www.cnblogs.com/oldUncle/p/64 ...
- 海量数据分库分表方案(二)技术选型与sharding-jdbc实现
上一章已经讲述分库分表算法选型,本章主要讲述分库分表技术选型 文中关联上一章,若下文出现提及其时,可以点击 分库分表算法方案与技术选型(一) 主要讲述 框架比较 sharding-jdbc.zdal ...
- 一文快速入门分库分表中间件 Sharding-JDBC (必修课)
书接上文 <一文快速入门分库分表(必修课)>,这篇拖了好长的时间,本来计划在一周前就该写完的,结果家庭内部突然人事调整,领导层进行权利交接,随之宣布我正式当爹,紧接着家庭地位滑落至第三名, ...
- 分库分表神器 Sharding-JDBC,几千万的数据你不搞一下?
今天我们介绍一下 Sharding-JDBC框架和快速的搭建一个分库分表案例,为讲解后续功能点准备好环境. 一.Sharding-JDBC 简介 Sharding-JDBC 最早是当当网内部使用的一款 ...
- mysql大数据解决方案--分表分库(0)
引言 对于一个大型的互联网应用,海量数据的存储和访问成为了系统设计的瓶颈问题,对于系统的稳定性和扩展性造成了极大的问题.通过数据切分来提高网站性能,横向扩展数据层已经成为架构研发人员首选的方式. •水 ...
- 微服务、分库分表、分布式事务管理、APM链路跟踪性能分析演示项目
好多年没发博,最近有时间整理些东西,分享给大家. 所有内容都在github项目liuzhibin-cn/my-demo中,基于SpringBoot,演示Dubbo微服务 + Mycat, Shardi ...
随机推荐
- 运行命令区分webpack环境,以及axios数据请求的封装
在开发环境和线上环境时,由于环境的不同,有时候需要修改一定的代码,可以通过配置webpack环境来减少对代码的修改:另外,有时候去看别人的代码,你可能都找不到他的数据请求在什么位置,最近在做一个vue ...
- webpack相关的问题
随着现代前端开发的复杂度和规模越来越庞大,已经不能抛开工程化来独立开发了,如react的jsx代码必须编译后才能在浏览器中使用:又如sass和less的代码浏览器也是不支持的. 而如果摒弃了这些开发框 ...
- java并发包工具(java.util.Concurrent)
一.CyclicBarrier 作用:所有线程准备好才进行,只要一条线程没准备好,都不进行 用法:所有线程准备好以后调用CyclicBarrier的await方法,然后主线程执行CyclicBarri ...
- 线程上下文类加载器(Context ClassLoader)
1.线程上下文类加载器是从jdk1.2开始引入的,类Thread中的getContextClassLoader()与setContextClassLoader(ClassLoader c1),分别用来 ...
- Java8的Optional:如何干掉空指针?
目录 Optional概述 Optional简单案例 Optional的主要方法 参考阅读 Optional概述 Optional 是个容器:它可以保存类型T的value,或者仅仅保存null.Opt ...
- 学习笔记之Python人机交互小项目一:名字管理系统
2020是一个不平凡的一年,但即使挫折不断,我们每学期的课程实训也没有受到影响,仍旧如期实施.与往年不同的是,今年的实训老师是学校邀请的公司在职人员来给我们实训.今年实训的内容是Python语言,下面 ...
- ElasticSearch教程——自定义分词器(转学习使用)
一.分词器 Elasticsearch中,内置了很多分词器(analyzers),例如standard(标准分词器).english(英文分词)和chinese(中文分词),默认是standard. ...
- 人生苦短我用Python,本文助你快速入门
目录 前言 Python基础 注释 变量 数据类型 浮点型 复数类型 字符串 布尔类型 类型转换 输入与输出 运算符 算术运算符 比较运算符 赋值运算符 逻辑运算符 if.while.for 容器 列 ...
- Go语言从入门到放弃(四)
前言 有段时间没摸Go语言了,最近B站的Go语言泄露挺火的. 还差的很远呐 学无止境 本章主要介绍一些零碎的小知识点 变更记录 # 19.4.30 起笔 # 19.4.30 增加代码打包步骤 正文 ...
- Harbor镜像删除回收?只看这篇
最近,公司的技术平台,运维的破事儿颇多.Jira无法访问,ES堆内存不足,Jenkins频繁不工作..等等等,让我这个刚入门的小兵抓心脑肝,夜不能寐,关键时刻方恨经验薄弱呀!!一波未平,一波又起,这不 ...