06.numpy聚合运算
>>> import numpy as np
>>> L = np.random.random(100)
>>> L
array([0.82846513, 0.19136857, 0.27040895, 0.56103442, 0.90238039,
0.85178834, 0.41808196, 0.39347627, 0.01622051, 0.29921337,
0.35377822, 0.89350267, 0.78613657, 0.77138693, 0.42005486,
0.77602514, 0.46430814, 0.18177017, 0.8840256 , 0.71879227,
0.6718813 , 0.25656363, 0.43080182, 0.01645358, 0.23499383,
0.51117131, 0.29200924, 0.50189351, 0.49827313, 0.10377152,
0.44644312, 0.96918917, 0.73847112, 0.71955061, 0.89304339,
0.96267468, 0.19705023, 0.71458996, 0.16192394, 0.86625477,
0.62382025, 0.95945512, 0.52414204, 0.03643288, 0.72687158,
0.00390984, 0.050294 , 0.99199232, 0.2122575 , 0.94737066,
0.45154055, 0.99879467, 0.64750149, 0.70224071, 0.42958177,
>>> sum(L)
52.03087325680787
>>> np.sum(L)
52.030873256807865
big_array = np.random.rand(1000000) >>> np.min(big_array)
4.459899819675428e-06 >>> big_array.max()
0.9999999038835905 >>> X = np.arange(16).reshape(4,4)
>>> X
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]]) >>> np.sum(X)
120 >>> np.sum(X,axis=0)
array([24, 28, 32, 36]) >>> np.sum(X,axis=1)
array([ 6, 22, 38, 54]) >>> np.prod(X)
0 >>> np.prod(X + 1)
2004189184 >>> np.mean(X)
7.5 >>> np.median(X)
7.5 >>> V = np.array([1,1,2,2,10])
>>> np.mean(V)
3.2 >>> np.median(V)
2.0 >>> np.percentile(big_array,q=50)
0.499739362948878
>>> for percent in [0,25,50,75,100]:
... print(np.percentile(big_array,q=percent))
...
4.459899819675428e-06
0.24975691457362903
0.499739362948878
0.7498092671305248
0.9999999038835905 >>> X = np.random.normal(0,1,size=1000000)
>>> np.mean(X)
0.00026937497963613595 >>> np.std(X)
0.9996291605602685 >>> np.min(X)
-5.333919783687649 >>> np.argmin(X)
661675 >>> np.argmax(X)
774515 >>> X[91952]
-0.5633231945005146 >>> np.max(X)
4.53612178954408 >>> x = np.arange(16)
>>> x
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) >>> np.random.shuffle(x)
>>> x
array([ 2, 7, 8, 4, 14, 15, 6, 11, 13, 1, 12, 0, 9, 10, 3, 5]) >>> np.sort(x)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) >>> x.sort()
>>> x
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) >>> x = np.random.randint(10, size=(4,4))
>>> x
array([[7, 0, 0, 7],
[0, 3, 5, 7],
[9, 7, 3, 9],
[4, 0, 9, 2]]) >>> np.sort(x)
array([[0, 0, 7, 7],
[0, 3, 5, 7],
[3, 7, 9, 9],
[0, 2, 4, 9]]) >>> np.sort(x,axis=0)
array([[0, 0, 0, 2],
[4, 0, 3, 7],
[7, 3, 5, 7],
[9, 7, 9, 9]]) >>> np.partition(X,3)
array([-5.33391978, -5.13221775, -4.86828137, ..., 0.16378629,
1.09224809, 1.00502282])
06.numpy聚合运算的更多相关文章
- Numpy入门 - 数组聚合运算
本节主要讲解numpy的几个常用的聚合运算,包括求和sum.求平均mean和求方差var. 一.求和sum import numpy as np arr = np.array([[1, 2, 3], ...
- pandas之聚合运算
通过聚合运算可以得到我们比较感兴趣的数据以方便处理 import pandas as pd import numpy as np # 先创建一组数据表DataFrame df = pd.DataFra ...
- MongoDB聚合运算之group和aggregate聚集框架简单聚合(10)
聚合运算之group 语法: db.collection.group( { key:{key1:1,key2:1}, cond:{}, reduce: function(curr,result) { ...
- Swift - 11 - nil聚合运算
//: Playground - noun: a place where people can play import UIKit var str = "Hello, playground& ...
- Dynamics 365 CE中使用FetchXML进行聚合运算
微软动态CRM专家罗勇 ,回复328或者20190429可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me! Dynamics 365 Customer Engagement ...
- NumPy 位运算
NumPy 位运算 NumPy "bitwise_" 开头的函数是位运算函数. NumPy 位运算包括以下几个函数: 函数 描述 bitwise_and 对数组元素执行位与操作 b ...
- 3:django models Making queries 高级进阶--聚合运算
在前一遍文章django models Making queries里面我们提到了django常用的一些检索数据库的内容, 下面我们来看一下更为高级的检索聚合运算 这是我们要用到的模型 class A ...
- NumPy算数运算
NumPy - 算数运算 用于执行算术运算(如add(),subtract(),multiply()和divide())的输入数组必须具有相同的形状或符合数组广播规则. 示例 import numpy ...
- C#聚合运算方法
Aggregate 对集合值执行自定义聚合运算 Average 计算集合平均值 Count 对集合的元素惊醒计数,还可以仅对满足某一谓词函数的元素进行计数 LongCount 对大型集合中的元素进行计 ...
随机推荐
- 图文并茂-超详解 CS:APP: Lab3-Attack(附带栈帧分析)
CS:APP:Lab3-ATTACK 0. 环境要求 关于环境已经在lab1里配置过了.lab1的连接如下 实验的下载地址如下 说明文档如下 http://csapp.cs.cmu.edu/3e/at ...
- Be accepted for inclusion in the IEEE INFOCOM 2018 technical program
中了一篇INFOCOM,虽然不是一作但也是入学之后一直做的一份工作,算是没白下功夫吧.超声波定位这类工作,老实说,想应用到实际产品中,还是有一段路要走的. 老实说我也一直犹豫毕设的这套东西搞清楚了要不 ...
- C/C++ New与Delete (小例子)
转自:http://blog.csdn.net/chenzujie/article/details/7011639 先来看两段小程序: 1). #include <iostream.h> ...
- Cisco的互联网络操作系统IOS和安全设备管理器SDM__散知识点1
1.启动路由器:当你初次启动一台Cisco路由器时,它将运行开机自检(POST)过程.如果通过了,它将从闪存中查找Cisco IOS,如果有IOS文件存在,则执行装载操作(闪存是一个可电子擦写.可编程 ...
- 调试lcd时候给linux单板移植tslib
作者:良知犹存 转载授权以及围观:欢迎添加微信公众号:Conscience_Remains 总述 tslib背景: 在采用触摸屏的移动终端中,触摸屏性能的调试是个重要问题之一,因为电磁噪声的缘故,触 ...
- Codeforces Round #671 (Div. 2)
比赛链接:https://codeforces.com/contest/1419 A. Digit Game 题意 给出一个 $n$ 位数,游戏规则如下: 1-indexed Raze标记奇数位 Br ...
- UVA 10480 Sabotage (最大流最小割)
题目链接:点击打开链接 题意:把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边. 这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点. 问题是 ...
- 前、中、后序遍历随意两种是否能确定一个二叉树?理由? && 栈和队列的特点和区别
前序和后序不能确定二叉树理由:前序和后序在本质上都是将父节点与子结点进行分离,但并没有指明左子树和右子树的能力,因此得到这两个序列只能明确父子关系,而不能确定一个二叉树. 由二叉树的中序和前序遍历序列 ...
- hdu5501 The Highest Mark
Problem Description The SDOI in 2045 is far from what it was been 30 years ago. Each competition has ...
- 洛谷 P2391.白雪皑皑 (并查集,思维)
题意:有\(n\)个点,对这些点进行\(m\)次染色,第\(i\)次染色会把区间\((i*p+q)\ mod\ N+1\)和\((i*q+p)\ mod\ N+1\)之间的点染成颜色\(i\),问最后 ...