数据结构-PHP 线段树的实现
转:
数据结构-PHP 线段树的实现
1.线段树介绍
线段树是基于区间的统计查询,线段树是一种 二叉搜索树,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN),线段树是一颗 平衡二叉树。
2.线段树示意图
如下图所示,数组 E中,假设区间 0-9 一共 10 个元素,每个儿子节点区间元素的个数都是父亲节点元素个数的一半,若出现 奇数 的情况,则右儿子元素区间比 左儿子 元素区间多一个:
Tips:如图所示的中节点中区间指的是数组
E的索引值。
3.线段树需要空间分析
假设我们把 线段树 看做是一颗 满二叉树,并且不考虑添加元素的情况(即区间固定),对于区间有 n 个元素的数组若 n=2^k(k是正整数) 则需要 2n 的空间,最差的情况是若 n=2^k+1 则需要 4n 的空间,如下图所示,最下面一层没有元素的节点使用 null 填充:
Tips: 若索引是从
i=0开始的,左儿子left(i) = 2*i+1,右儿子right(i) = 2*i+2,parent(i) = (i-1)/2 取整;
对于满二叉树来说,需要的节点数如下:
若当 n=2^k+1 需要的的空间数:
Tips:对于区间有
n个元素的数组若n=2^k(k是正整数)则需要2n的空间,最差的情况是若n=2^k+1则需要4n的空间就足够了。
4.定义 SegmentTree 线段树类
其中定义了 leftSon($i) 方法,表示求某个节点左儿子节点索引值的方法,rightSon($i) 表示求某个节点右儿子节点 索引值 的方法:
data[$i] = $arr[$i];
}
//若是静态语言需要开 4n 空间来表示 $this->tree
}
public function getSize() {
return count($this->data);
}
public function get(int $index) {
if ($index < 0 || $index >= count($this->data)) {
echo "索引错误";
exit;
}
return $this->data[$index];
}
/**
* 获取某个节点儿子节点索引,若索引是从 i=0 开始的,左儿子 left(i) = 2*i+1
* @param $i
* @return int
*/
private function leftSon($i): int {
return $i * 2 + 1;
}
/**
* 获取某个节点右儿子节点索引,若索引是从 i=0 开始的,右儿子 left(i) = 2*i+2
* @param $i
* @return int
*/
private function rightSon($i): int {
return $i * 2 + 2;
}
}
5.创建线段树
接下来使用递归思想去 创建线段树,下面给出递归函数 PHP 代码:
if ($left == $right) {
$this->tree[$i] = $this->data[$left]; //处理递归到叶子节点时 并赋值最原始的 $data 对应的索引值
} else {
$leftSon = $this->leftSon($i); //左儿子索引
$rightSon = $this->rightSon($i); //右儿子索引
$mid = $left + ceil(($right - $left) / 2);//求区间中值
$this->buildSegmentTree($leftSon, $left, $mid - 1); //递归左儿子树
$this->buildSegmentTree($rightSon, $mid, $right); //递归右儿子树
$this->tree[$i] = $this->merge->operate($this->tree[$leftSon], $this->tree[$rightSon]); //这里是根据业务来定节点需要存储的元素
}
Tips:其中节点元素存储的值需要根据业务来定,如上面代码表示的是每个节点存储的是
区间求和的值,很显然这种方式不灵活,用户在实例化该类的时候可以传入一个merge对象用于元素操作的。
6.节点元素计算规则
上述SegmentTree类中可以在 __construct() 方法中传入一个 $merge 对象,$merge 中可以定义一个 operate() 方法计算得出节点元素值,如下:
merge = $merge;
for ($i = 0; $i < count($arr); $i++) {
$this->data[$i] = $arr[$i];
}
//若是静态语言需要开 4n 空间来表示 $this->tree
//递归创建线段树
$this->buildSegmentTree(0, 0, count($this->data) - 1);
}
private function buildSegmentTree(int $i, int $left, int $right) {
if ($left == $right) {
$this->tree[$i] = $this->data[$left]; //处理递归到叶子节点时 并赋值最原始的 $data 对应的索引值
} else {
$leftSon = $this->leftSon($i); //左儿子索引
$rightSon = $this->rightSon($i); //右儿子索引
$mid = $left + ceil(($right - $left) / 2);//求区间中值
$this->buildSegmentTree($leftSon, $left, $mid - 1); //递归左儿子树
$this->buildSegmentTree($rightSon, $mid, $right); //递归右儿子树
$this->tree[$i] = $this->merge->operate($this->tree[$leftSon], $this->tree[$rightSon]); //这里是根据业务来定节点需要存储的元素
}
}
public function getSize() {
return count($this->data);
}
public function get(int $index) {
if ($index < 0 || $index >= count($this->data)) {
echo "索引错误";
exit;
}
return $this->data[$index];
}
/**
* 获取某个节点儿子节点索引,若索引是从 i=0 开始的,左儿子 left(i) = 2*i+1
* @param $i
* @return int
*/
private function leftSon($i): int {
return $i * 2 + 1;
}
/**
* 获取某个节点右儿子节点索引,若索引是从 i=0 开始的,右儿子 left(i) = 2*i+2
* @param $i
* @return int
*/
private function rightSon($i): int {
return $i * 2 + 2;
}
}
6.1 Merge 类定义
如下定义就可以很灵活的处理每个节点的计算规则:
class Merge{
public funcrion operate($left,$right){
//这里可以定义需要操作的规则
return $left+$right; //如求平均值,这里可以 return ($left+$right)/2;
}
}
7. 求和演示
若是各个线段区间存储的是区间求和,则 Merge 类中的 operate() 方法返回是两个元素的和,代码如下:
输出如下:
此时线段树的节点元素值示意图如下:
8. 线段树的区间查询
这里以查询 [2-6] 区间为例,若要查询区间 [2-6] 的求和需要根据区间来寻找需要求的值,示意图如下:
PHP 代码使用递归思想实现如下:
public function query($qleft, $qright) {
if ($qleft < 0 || $qright >= count($this->data) || $qright < $qleft) {
echo "索引范围错误";
exit;
}
return $this->recursionQuery(0, 0, count($this->data) - 1, $qleft, $qright);
}
/**
* 递归查询区间
* @param $left 当前节点区间左端值
* @param $right 当前节点区间右端值
* @param $qleft 需要查询的区间左端值
* @param $qright 需要查询的区间右端值
*/
private function recursionQuery($i, $left, $right, $qleft, $qright) {
$mid = $left + ceil(($right - $left) / 2);//求区间中值向上取整
//先处理满足区间条件的情况
if ($qleft == $left && $qright == $right) { //查询左右端和当前节点左右端重合
return $this->tree[$i];
} elseif ($qright < $mid) { //查询左右端在中值左边,那么结果区间在左儿子树
return $this->recursionQuery($this->leftSon($i), $left, $mid - 1, $qleft, $qright);
} elseif ($qleft >= $mid) { //查询左右端在中值右边,那么结果区间在右儿子树
return $this->recursionQuery($this->rightSon($i), $mid, $right, $qleft, $qright);
} else { //中值在查询左右端中间 将区间分成两边,结果在左右儿子树上都有
$leftSon = $this->recursionQuery($this->leftSon($i), $left, $mid - 1, $qleft, $mid - 1);
$righttSon = $this->recursionQuery($this->rightSon($i), $mid, $right, $mid, $qright);
return $this->merge->operate($leftSon, $righttSon);
}
}
输出如下:
9.完整 PHP 代码
9.1 SegmentTree 类
merge = $merge;
for ($i = 0; $i < count($arr); $i++) {
$this->data[$i] = $arr[$i];
}
//若是静态语言需要开 4n 空间来表示 $this->tree
//递归创建线段树
$this->buildSegmentTree(0, 0, count($this->data) - 1);
}
public function query($qleft, $qright) {
if ($qleft < 0 || $qright >= count($this->data) || $qright < $qleft) {
echo "索引范围错误";
exit;
}
return $this->recursionQuery(0, 0, count($this->data) - 1, $qleft, $qright);
}
/**
* 递归查询区间
* @param $left 当前节点区间左端值
* @param $right 当前节点区间右端值
* @param $qleft 需要查询的区间左端值
* @param $qright 需要查询的区间右端值
*/
private function recursionQuery($i, $left, $right, $qleft, $qright) {
$mid = $left + ceil(($right - $left) / 2);//求区间中值向上取整
//先处理满足区间条件的情况
if ($qleft == $left && $qright == $right) { //查询左右端和当前节点左右端重合
return $this->tree[$i];
} elseif ($qright < $mid) { //查询左右端在中值左边,那么结果区间在左儿子树
return $this->recursionQuery($this->leftSon($i), $left, $mid - 1, $qleft, $qright);
} elseif ($qleft >= $mid) { //查询左右端在中值右边,那么结果区间在右儿子树
return $this->recursionQuery($this->rightSon($i), $mid, $right, $qleft, $qright);
} else { //中值在查询左右端中间 将区间分成两边,结果在左右儿子树上都有
$leftSon = $this->recursionQuery($this->leftSon($i), $left, $mid - 1, $qleft, $mid - 1);
$righttSon = $this->recursionQuery($this->rightSon($i), $mid, $right, $mid, $qright);
return $this->merge->operate($leftSon, $righttSon);
}
}
private function buildSegmentTree(int $i, int $left, int $right) {
if ($left == $right) {
$this->tree[$i] = $this->data[$left]; //处理递归到叶子节点时 并赋值最原始的 $data 对应的索引值
} else {
$leftSon = $this->leftSon($i); //左儿子索引
$rightSon = $this->rightSon($i); //右儿子索引
$mid = $left + ceil(($right - $left) / 2);//求区间中值
$this->buildSegmentTree($leftSon, $left, $mid - 1); //递归左儿子树
$this->buildSegmentTree($rightSon, $mid, $right); //递归右儿子树
$this->tree[$i] = $this->merge->operate($this->tree[$leftSon], $this->tree[$rightSon]); //这里是根据业务来定节点需要存储的元素
}
}
public function getSize() {
return count($this->data);
}
public function get(int $index) {
if ($index < 0 || $index >= count($this->data)) {
echo "索引错误";
exit;
}
return $this->data[$index];
}
/**
* 获取某个节点儿子节点索引,若索引是从 i=0 开始的,左儿子 left(i) = 2*i+1
* @param $i
* @return int
*/
private function leftSon($i): int {
return $i * 2 + 1;
}
/**
* 获取某个节点右儿子节点索引,若索引是从 i=0 开始的,右儿子 left(i) = 2*i+2
* @param $i
* @return int
*/
private function rightSon($i): int {
return $i * 2 + 2;
}
}
9.2 输出演示代码
query(2,6);
代码仓库 :https://gitee.com/love-for-po...
扫码关注爱因诗贤
转:
数据结构-PHP 线段树的实现
数据结构-PHP 线段树的实现的更多相关文章
- 【Foreign】数据结构C [线段树]
数据结构C Time Limit: 20 Sec Memory Limit: 512 MB Description Input Output Sample Input Sample Output H ...
- 【数据结构】线段树(Segment Tree)
假设我们现在拿到了一个非常大的数组,对于这个数组里面的数字要反复不断地做两个操作. 1.(query)随机在这个数组中选一个区间,求出这个区间所有数的和. 2.(update)不断地随机修改这个数组中 ...
- 数据结构1 线段树查询一个区间的O(log N) 复杂度的证明
线段树属于二叉树, 其核心特征就是支持区间加法,这样就可以把任意待查询的区间$[L, R]$分解到线段树的节点上去,再把这些节点的信息合并起来从而得到区间$[L,R]$的信息. 下面证明在线段树上查询 ...
- 数据结构(线段树):Educational Codeforces Round 6 620E. New Year Tree
E. New Year Tree time limit per test 3 seconds memory limit per test 256 megabytes input standard in ...
- 数据结构(线段树):BZOJ 1568 [JSOI2008]Blue Mary开公司
1568: [JSOI2008]Blue Mary开公司 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 602 Solved: 214[Submit ...
- 牛客练习赛28 B数据结构(线段树)
链接:https://www.nowcoder.com/acm/contest/200/B来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言5242 ...
- 2018.10.12 NOIP模拟 数据结构(线段树)
传送门 sb线段树题居然还卡常. 修改操作直接更新区间最小值和区间标记下传即可. 询问加起来最多5e65e65e6个数. 因此直接询问5e65e65e6次最小值就行了. 代码
- 【uoj#228】基础数据结构练习题 线段树+均摊分析
题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有三种:区间加.区间开根.区间求和. $n,m,a_i\le 100000$ . 题解 线段树+均摊分析 对于原来的两个数 $a$ ...
- 数据结构习题 线段树&树状数组
说明:这是去年写了一半的东西,一直存在草稿箱里,今天整理东西的时候才发现,还是把它发表出来吧.. 以下所有题目来自Lrj的<训练指南> LA 2191 单点修改,区间和 Fenwick直 ...
随机推荐
- HDOJ 1028 母函数分析
#include<iostream>#include<cstring>using namespace std;int main(){ int c1[10000],c2[1 ...
- poj1066 线段相交简单应用(解题报告)
#include<stdio.h> #include<math.h> const double eps=1e-8; int n; struct Point { double x ...
- Detect the Virus ZOJ - 3430 AC自动机
One day, Nobita found that his computer is extremely slow. After several hours' work, he finally fou ...
- 网络安全-企业环境渗透2-wordpress任意文件读&&FFmpeg任意文件读
参考 http://prontosil.club/posts/c08799e1/ 一. 实验名称 企业环境渗透2 二. 实验目的 [实验描述] 操作机的操作系统是kali 进入系统后默认是命令行界面 ...
- MSE,RMSE
MSE: Mean Squared Error 均方误差是指参数估计值与参数真值之差平方的期望值; MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度. RMSE ...
- 2019南昌网络赛H The Nth Item(二阶线性数列递推 + 广义斐波那契循环节 + 分段打表)题解
题意: 传送门 已知\(F(n)=3F(n-1)+2F(n-2) \mod 998244353,F(0)=0,F(1)=1\),给出初始的\(n_1\)和询问次数\(q\),设每一次的答案\(a_i= ...
- 最新 Steam 免费游戏
最新 Steam 免费游戏 免费 免费游戏 免费开玩 免费游戏玩的游戏是有内购的. 免费开玩游戏开玩是一部分免费,玩到某个地方要购买才能继续玩. 免费就是永久免费并且无内购. refs https:/ ...
- SVG background watermark
SVG background watermark SVG 背景水印 <svg xmlns="http://www.w3.org/2000/svg" width="2 ...
- sass文件编译(.scss->.css),使用ruby环境,在windows10,koala工具,Error: Invalid GBK character "\xE5"
1 注意事项: 问题描述: 请确保 Encoding.default_external = Encoding.find('utf-8') 是uft-8 编码! sass文件编译时候使用ruby环境,在 ...
- 如何使用 js 实现一个树组件
如何使用 js 实现一个树组件 tree component const arr = [ { id: 1, value: 1, level: 1, parentId: 0, }, { id: 2, v ...