[CF 612E]Square Root of Permutation
A permutation of length n is an array containing each integer from 1 to n exactly once. For example, q = [4, 5, 1, 2, 3] is a permutation. For the permutation q the square of permutation is the permutation p that p[i] = q[q[i]] for each i = 1... n. For example, the square of q = [4, 5, 1, 2, 3] is p = q2 = [2, 3, 4, 5, 1].
This problem is about the inverse operation: given the permutation p you task is to find such permutation q that q2 = p. If there are several such q find any of them.
Input
The first line contains integer n (1 ≤ n ≤ 106) — the number of elements in permutation p.
The second line contains n distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of permutation p.
Output
If there is no permutation q such that q2 = p print the number "-1".
If the answer exists print it. The only line should contain n different integers qi (1 ≤ qi ≤ n) — the elements of the permutation q. If there are several solutions print any of them.
Examples
input
4
2 1 4 3
output
3 4 2 1
input
4
2 1 3 4
output
-1
input
5
2 3 4 5 1
output
4 5 1 2 3
题目大意:
给你个置换p,然后做平方运算,得到置换q,题目给你q,问你能否找到p,要构造出来。
题解:
这道题要求倒推出一个置换,由于原置换p中的环不一定全是奇数环,所以平方之后有可能有环会裂开。
对于平方后的置换q中的奇数环,直接在里面推。偶数环就看是否有相同大小的偶数环与它合并。
//Never forget why you start
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
int n,m,a[],lm,ans[],q[];
struct node{
int sum;
vector<int>p;
friend bool operator < (const node a,const node b){
return a.sum<b.sum;
}
}s[];
int vis[],cnt;
void dfs(int r){
vis[r]=;
cnt++;
s[lm].p.push_back(r);
if(vis[a[r]])return;
else dfs(a[r]);
}
int main(){
int i,j;
scanf("%d",&n);
for(i=;i<=n;i++)scanf("%d",&a[i]);
for(i=;i<=n;i++)
if(!vis[i]){
cnt=;
lm++;
dfs(i);
s[lm].sum=cnt;
}
sort(s+,s+lm+);
bool flag=;
for(i=;i<=lm;i++){
if(s[i].sum&)continue;
else{
if(s[i+].sum==s[i].sum){i++;continue;}
else {flag=;break;}
}
}
if(flag){printf("-1\n");return ;}
for(i=;i<=lm;i++){
if(s[i].sum&){
for(j=;j<s[i].sum;j++)
q[j*%s[i].sum]=s[i].p[j];
for(j=;j<s[i].sum-;j++)
ans[q[j]]=q[j+];
ans[q[s[i].sum-]]=q[];
}
else{
int k=i+;
for(j=;j<s[i].sum;j++){
ans[s[i].p[j]]=s[k].p[j];
ans[s[k].p[j]]=s[i].p[(j+)%s[i].sum];
}
i++;
}
}
for(i=;i<=n;i++)
printf("%d ",ans[i]);
return ;
}
[CF 612E]Square Root of Permutation的更多相关文章
- Codeforces 612E - Square Root of Permutation
E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...
- codefroces 612E Square Root of Permutation
A permutation of length n is an array containing each integer from 1 to n exactly once. For example, ...
- Codeforces.612E.Square Root of Permutation(构造)
题目链接 \(Description\) 给定一个\(n\)的排列\(p_i\),求一个排列\(q_i\),使得对于任意\(1\leq i\leq n\),\(q_{q_i}=p_i\).无解输出\( ...
- Square Root of Permutation - CF612E
Description A permutation of length n is an array containing each integer from 1 to n exactly once. ...
- CF612E Square Root of Permutation
题目分析 我们首先模拟一下题意 假设有一个 \(q _1\) \(p\) \(a_1\) \(a_x\) \(a_{a_1}\) \(a_{a_x}\) \(q\) \(x\) \(a_1\) \(a ...
- Codeforces 715A. Plus and Square Root[数学构造]
A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Project Euler 80:Square root digital expansion 平方根数字展开
Square root digital expansion It is well known that if the square root of a natural number is not an ...
- Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))
C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
随机推荐
- UWP&WP8.1 基础控件——Grid
Grid是一个面板控件 Grid是UWP和WPF,WP8.1中最重要的一个控件,相当相当重要. 他是一个面板控件,是用来添加其他控件 但是呢 用法确实简单的很. 大概就这个样子. 你用工具箱拖, ...
- springboot整合mybatis,redis,代码(四)
一 说明 这是spring整合redis注解开发的系类: 二 正文 在注解开发时候,会有这几个注解需要注意: 具体含义: 1.@Cacheable 可以标记在方法上,也可以标记在类上.当标记在方法上时 ...
- windwos-sshfs
从 http://www.jianshu.com/p/d79901794e3d 转载 目的 最近因为需要在linux虚拟机里进行开发程序,虽然在linux里有超强的编辑器vim,但vim开发html前 ...
- I2C(smbus pmbus)和SPI分析
2C和SPI作为两种非常常用的低速外部总线 I2C I2C是以前的飞利浦半导体制定的标准,也就是如今的NXP. I2C总线由一条数据线(SDA)和一条时钟线(SCL)组成.设备分主从,主设备提供时钟, ...
- 读经典——《CLR via C#》(Jeffrey Richter著) 笔记_new新建对象
CLR使用 new 操作符来创建新对象,例如:Employee e=new Employee("Param1"); 以下是 new 操作符所做的事情. 它计算类型及其所有基类型 ...
- P2264 情书
传送门 正常会想到字典树 然鹅数据怎么小直接map也能过 然后就写map暴力匹配了 毫无思维难度,毫无代码难度 注意逗号算单词分隔符,如果有句号就算另一句 同一句的单词重复出现只计算一次贡献 再开个m ...
- Flask&&人工智能AI -- 7 MongoDB
MongoDB初识,增删改查操作,数据类型,$关键字以及$修改器.“$”的奇妙用法,Array Object的特殊操作,选取跳过排序,客户端操作 一.MongoDB初识 什么是MongoDB Mong ...
- 浅谈CSS3中display属性的Flex布局
浅谈CSS3中display属性的Flex布局 最近在学习微信小程序,在设计首页布局的时候,新认识了一种布局方式display:flex 1 .container { 2 display: fle ...
- Java高级工程师应该掌握的东东
今天偶然看了膜拜单车官网对java程序员的招聘要求,如下,可以对照发现自己的不足 职责 负责APP SERVER中间层等模块开发 完成各类需求开发任务,同时保证服务稳定性.茁壮性 要求 精通Java语 ...
- sqlserver 索引进阶(上)
参考原文:http://www.cnblogs.com/tjy9999/p/4494662.html 2. 非聚集索引 SET STATISTICS io ON SET STATISTICS time ...