bzoj1004 [HNOI2008]Cards【Burnside/Polya】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1004
一道好题,但并不是好在融合了三个“考点”(计数,背包dp,逆元),其实背包dp以及求逆元都是小事,重点在于如何计数。
输入数据给出的m种置换是无法构成一个置换群的,因为一个群的定义需要4个性质,即封闭性,结合律,单位元,逆元,根据题目的说法,已经符合了封闭性、结合律、逆元,但是没有单位元,所以需要先添加一个新的置换,对于每个i,a[i] = i。这个置换即为单位元,这样子就构成了置换群。
然后,为什么polya对于本题不适用呢?因为本题规定的颜色数量有限(绿色只有sg个,红色只有sr个,蓝色只有sb个)。若是每种颜色都不限数量的话,因为一个置换的轮换(“轮换”就是一个括号括起来的循环节)必须是同一种颜色,这样才能在置换完成后与置换前相同。然而本题颜色数量有限,怎么办呢?如之前所说,一个轮换必须是同一种颜色,那么我们可以把这个置换的所有轮换列出来,就象这样:
(1, 2, 3), (4, 6), (5, 7), (8, 9, 10, 11), (12)
令C(ai)为置换ai的轮换的数量,既然现在不能简单的3^C(ai) (3是三种颜色),那么就考虑在当前轮换下,有三种决策,一是染成绿色,二是染成红色,三是染成蓝色——这就是一个三维的01背包!之后就简单了,在最后的最后在乘一下置换数m的逆就好了。
#include <cstdio>
#include <cstring> int n, m, p, sr, sb, sg, a[65][65], ans, f[25][25][25], siz[65], cnt;
char book[65]; inline int cal(int * cir) {
memset(f, 0, sizeof f);
f[0][0][0] = 1;
memset(book, 0, sizeof book);
cnt = 0;
for (int i = 1; i <= n; ++i) {
if (!book[i]) {
++cnt;
book[i] = 1;
siz[cnt] = 1;
for (int j = cir[i]; j != i; j = cir[j]) {
book[j] = 1;
++siz[cnt];
}
}
}
for (int i = 1; i <= cnt; ++i) {
for (int jr = sr; ~jr; --jr) {
for (int jb = sb; ~jb; --jb) {
for (int jg = sg; ~jg; --jg) {
if (jr >= siz[i]) {
f[jr][jb][jg] = (f[jr][jb][jg] + f[jr - siz[i]][jb][jg]) % p;
}
if (jb >= siz[i]) {
f[jr][jb][jg] = (f[jr][jb][jg] + f[jr][jb - siz[i]][jg]) % p;
}
if (jg >= siz[i]) {
f[jr][jb][jg] = (f[jr][jb][jg] + f[jr][jb][jg - siz[i]]) % p;
}
}
}
}
}
return f[sr][sb][sg];
}
inline int poww(int di, int mi) {
int i, rt;
for (i = 31; mi >> i & 1 ^ 1; --i);
rt = di;
for (--i; ~i; --i) {
rt = rt * rt % p;
if (mi >> i & 1) {
rt = rt * di % p;
}
}
return rt;
} int main(void) {
//freopen("in.txt", "r", stdin);
scanf("%d%d%d%d%d", &sr, &sb, &sg, &m, &p);
n = sr + sb + sg;
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
scanf("%d", a[i] + j);
}
}
++m;
for (int j = 1; j <= n; ++j) {
a[m][j] = j;
} for (int i = 1; i <= m; ++i) {
ans = (ans + cal(a[i])) % p;
}
printf("%d\n", ans * poww(m, p - 2) % p);
return 0;
}
bzoj1004 [HNOI2008]Cards【Burnside/Polya】的更多相关文章
- BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】
题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i ...
- [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】
题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...
- [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...
- bzoj1004 [HNOI2008]Cards 置换群+背包
[bzoj1004][HNOI2008]Cards 2014年5月26日5,3502 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿 ...
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- 【Burnside定理】&【Pólya定理】
Burnside & Pólya (详细内容请参阅<组合数学>或2008年cyx的论文,这里只写一些我学习的时候理解困难的几个点,觉得我SB的请轻鄙视……如果有觉得不科学的地方欢迎 ...
- 【BZOJ】1004: [HNOI2008]Cards(置换群+polya+burnside)
http://www.lydsy.com/JudgeOnline/problem.php?id=1004 学习了下polya计数和burnside引理,最好的资料就是:<Pólya 计数法的应用 ...
- [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...
- [BZOJ1004] [HNOI2008] Cards (Polya定理)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...
随机推荐
- DTP模型之一:(XA协议之一)XA协议、二阶段2PC、三阶段3PC提交
XA协议 XA是一个分布式事务协议,由Tuxedo提出.XA中大致分为两部分:事务管理器和本地资源管理器.其中本地资源管理器往往由数据库实现,比如Oracle.DB2这些商业数据库都实现了XA接口,而 ...
- Sublime Text3常用插件以及安装方法(实用)【转载】
https://www.cnblogs.com/liuchaoH/p/6370008.html Package Control组件在线安装 按Ctrl+`调出console(注:避免热键冲突) 粘贴以 ...
- Linux下部署MySQL,大小写敏感踩坑记录
今天在将开发环境中的门户数据库复制到新环境后,使用SqlSugar的ORM框架进行数据库操作的时候,出现了主键找不到的现象.排查了很久终于发现了关键点.特此记录. 1.开发环境: 操作系统:CE ...
- C++之string类
1.String对象的初始化 string s1; 默认构造函数,s1为空串 string s4(n, 'c'); 将s4初始化为字符c的n个副本 string s ...
- rsyn文件传输
Rsync的命令格式可以为以下六种: rsync [OPTION]... SRC DEST rsync [OPTION]... SRC [USER@]HOST:DEST rsync [OPTION]. ...
- 一个自动修改本地IP地址的BAT
set /a num1=%random%%%200+1+1 //生成随机数set ip=192.168.1.//ip 主体set ip1=%ip%%num1% //拼接两部分cmd /c netsh ...
- [HDU1109]模拟退火算法
模拟退火的基本思想: (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L (2) 对k=1,……,L做第(3)至第6步: (3) 产生新解$S\prime $ ...
- Linux中发布项目的一些命令笔记
记一下,Linux中发布项目的一些难记的命令: .安装jdk a.检测是否安装了jdk 运行java -version b.若有需要将其卸载 c.查看安装那些jdk rpm -qa | grep ja ...
- java单链表反转
今天做leetcode,遇到了单链表反转.研究了半天还搞的不是太懂,先做个笔记吧 参考:http://blog.csdn.net/guyuealian/article/details/51119499 ...
- (分享)一位资深程序员大牛给予Java初学者的学习路线建议
摘自:http://bbs.itheima.com/thread-333038-1-1.html 如果你是在校学生,务必要在学好基础(比如计算机系统.算法.编译原理等等)的前提下,再考虑去进行下面的学 ...