OpenCV细化算法简单解析
细化算法它的原理也很简单:
我们对一副二值图像进行骨架提取,就是删除不需要的轮廓点,只保留其骨架点。假设一个像素点,我们定义该点为p1,则它的八邻域点p2->p9位置如下图所示,该算法考虑p1点邻域的实际情况,以便决定是否删除p1点。假设我们处理的为二值图像,背景为黑色,值为0,要细化的前景物体像素值为1。

算法的描述如下:
首先复制源图像到目地图像,然后建立一个临时图像,接着执行下面操作:
1. 把目地图像复制给临时图像,对临时图像进行一次扫描,对于不为0的点,如果满足以下四个条件,则在目地图像中删除该点(就是设置该像素为0),这里p2,…,p9是对应位置的像素灰度值(其为1或者0)。
a. 2<= p2+p3+p4+p5+p6+p7+p8+p9<=6
大于等于2会保证p1点不是端点或孤立点,因为删除端点和孤立点是不合理的,小于等于6保证p1点是一个边界点,而不是一个内部点。等于0时候,周围没有等于1的像素,所以p1为孤立点,等于1的时候,周围只有1个灰度等于1的像素,所以是端点(注:端点是周围有且只能有1个值为1的像素)。

b. p2->p9的排列顺序中,01模式的数量为1,比如下面的图中,有p2p3 => 01, p6p7=>01,所以该像素01模式的数量为2。

之所以要01模式数量为1,是要保证删除当前像素点后的连通性。比如下面的图中,01模式数量大于1,如果删除当前点p1,则连通性不能保证。

c. P2*p4*p6 = 0
d. p4*p6*p8 = 0

在第一次子迭代中,只是移去东南的边界点,而不考虑西北的边界点,注意p4,p6出现了2次,就是说它们有一个为0,则c,d就满足。
2. 接下来,把目地图像再次复制到临时图像,接着对临时图像进行一次扫描,如果不为0的点它的八邻域满足以下4个条件,则在目地图像中删除该点(就是设置该像素为0)
a. 2<= p2+p3+p4+p5+p6+p7+p8+p9<=6
b. p2->p9的排列顺序中,01模式的数量(这里假设二值图非零值为1)为1。
c. p2*p4*p8 = 0
d. p2*p6*p8 = 0

第二次迭代则相反,会移去西北的边界点,注意p2,p8出现了2次,就是说它们有一个为0,则c,d就满足。
执行完上面两个步骤后,就完成了一次细化算法,我们可以多次迭代执行上述过程,得到最终的骨架图。
细化算法代码如下:
以上部分原理是转载(迈克老狼2012)http://www.cnblogs.com/mikewolf2002/p/3321732.html
接下来发布的是在我电脑上通过的测试代码:
编译环境为win7+VS2015+OpenCV3.0
void cvThin(IplImage* src, IplImage* dst, int iterations)
{
//此时的src是一个二值化的图片
CvSize size = cvGetSize(src);
cvCopy(src, dst); int n = , i = , j = ;
for (n = ; n < iterations; n++)//开始进行迭代
{
IplImage* t_image = cvCloneImage(dst);
for (i = ; i < size.height; i++)
{
for (j = ; j < size.width; j++)
{
if (CV_IMAGE_ELEM(t_image, uchar, i, j) == )
{
int ap = ;
int p2 = (i == ) ? : CV_IMAGE_ELEM(t_image, uchar, i - , j);
int p3 = (i == || j == size.width - ) ? : CV_IMAGE_ELEM(t_image, uchar, i - , j + );
if (p2 == && p3 == )
{
ap++;
} int p4 = (j == size.width - ) ? : CV_IMAGE_ELEM(t_image, uchar, i, j + );
if (p3 == && p4 == )
{
ap++;
} int p5 = (i == size.height - || j == size.width - ) ? : CV_IMAGE_ELEM(t_image, uchar, i + , j + );
if (p4 == && p5 == )
{
ap++;
} int p6 = (i == size.height - ) ? : CV_IMAGE_ELEM(t_image, uchar, i + , j);
if (p5 == && p6 == )
{
ap++;
} int p7 = (i == size.height - || j == ) ? : CV_IMAGE_ELEM(t_image, uchar, i + , j - );
if (p6 == && p7 == )
{
ap++;
} int p8 = (j == ) ? : CV_IMAGE_ELEM(t_image, uchar, i, j - );
if (p7 == && p8 == )
{
ap++;
} int p9 = (i == || j == ) ? : CV_IMAGE_ELEM(t_image, uchar, i - , j - );
if (p8 == && p9 == )
{
ap++;
}
if (p9 == && p2 == )
{
ap++;
} if ((p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) > && (p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) < )
{
if (ap == )
{
if (!(p2 && p4 && p6))
{
if (!(p4 && p6 && p8))
{
CV_IMAGE_ELEM(dst, uchar, i, j) = ;//设置目标图像中像素值为0的点
}
}
}
} }
}
} cvReleaseImage(&t_image); t_image = cvCloneImage(dst);
for (i = ; i < size.height; i++)
{
for (int j = ; j < size.width; j++)
{
if (CV_IMAGE_ELEM(t_image, uchar, i, j) == )
{
int ap = ;
int p2 = (i == ) ? : CV_IMAGE_ELEM(t_image, uchar, i - , j);
int p3 = (i == || j == size.width - ) ? : CV_IMAGE_ELEM(t_image, uchar, i - , j + );
if (p2 == && p3 == )
{
ap++;
}
int p4 = (j == size.width - ) ? : CV_IMAGE_ELEM(t_image, uchar, i, j + );
if (p3 == && p4 == )
{
ap++;
}
int p5 = (i == size.height - || j == size.width - ) ? : CV_IMAGE_ELEM(t_image, uchar, i + , j + );
if (p4 == && p5 == )
{
ap++;
}
int p6 = (i == size.height - ) ? : CV_IMAGE_ELEM(t_image, uchar, i + , j);
if (p5 == && p6 == )
{
ap++;
}
int p7 = (i == size.height - || j == ) ? : CV_IMAGE_ELEM(t_image, uchar, i + , j - );
if (p6 == && p7 == )
{
ap++;
}
int p8 = (j == ) ? : CV_IMAGE_ELEM(t_image, uchar, i, j - );
if (p7 == && p8 == )
{
ap++;
}
int p9 = (i == || j == ) ? : CV_IMAGE_ELEM(t_image, uchar, i - , j - );
if (p8 == && p9 == )
{
ap++;
}
if (p9 == && p2 == )
{
ap++;
}
if ((p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) > && (p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) < )
{
if (ap == )
{
if (p2*p4*p8 == )
{
if (p2*p6*p8 == )
{
CV_IMAGE_ELEM(dst, uchar, i, j) = ;
}
}
}
}
} } }
cvReleaseImage(&t_image);
} }
细化结果因为我的图不方便展示,大家可以参考迈克老狼2012的哦,效果是很像的,他采用的mat类,而我采用的iplimage类。
OpenCV细化算法简单解析的更多相关文章
- 手指静脉细化算法过程原理解析 以及python实现细化算法
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/8672489.html 文中的一些图片以及思想很多都是参考https://www.cnblogs ...
- OpenCV学习(18) 细化算法(6)
本章我们在学习一下基于索引表的细化算法. 假设要处理的图像为二值图,前景值为1,背景值为0. 索引表细化算法使用下面的8邻域表示法: 一个像素的8邻域,我们可以用8位二进制表示,比如下面的8邻域,表示 ...
- OpenCV学习(13) 细化算法(1)
程序编码参考经典的细化或者骨架算法文章: T. Y. Zhang and C. Y. Suen, "A fast parallel algorithm for thinning digita ...
- OpenCV学习(17) 细化算法(5)
本章我们看下Pavlidis细化算法,参考资料http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/con ...
- OpenCV学习(16) 细化算法(4)
本章我们学习Rosenfeld细化算法,参考资料:http://yunpan.cn/QGRjHbkLBzCrn 在开始学习算法之前,我们先看下连通分量,以及4连通性,8连通性的概念: http://w ...
- OpenCV学习(14) 细化算法(2)
前面一篇教程中,我们实现了Zhang的快速并行细化算法,从算法原理上,我们可以知道,算法是基于像素8邻域的形状来决定是否删除当前像素.还有很多与此算法相似的细化算法,只是判断的条件不一样. ...
- c++opencv中线条细化算法
要达到的效果就是将线条尽量细化成单像素,按照论文上的Hilditch算法试了一下,发现效果不好,于是自己尝试着写了一下细化的算法,基本原理就是从上下左右四个方向向内收缩. 1.先是根据图片中的原则确定 ...
- Adaboost 算法实例解析
Adaboost 算法实例解析 1 Adaboost的原理 1.1 Adaboost基本介绍 AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由 ...
- 2. Attention Is All You Need(Transformer)算法原理解析
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...
随机推荐
- css笔记-1
id 优先级大于 class 行间 style 优先级大于id class 和属性是并行的 !important > 行间样式 >id >class|属性 >标签选择器 &g ...
- adobe flash player 过期问题
在百度搜索 " adobe flash player debugger",如图打开官网 https://www.adobe.com/support/flashplayer/debu ...
- WPARAM和LPARAM的含义
lParam 和 wParam 是宏定义,一般在消息函数中带这两个类型的参数,通常用来存储窗口消息的参数. LRESULT CALLBACK WindowProc(HWND hwnd, UINT uM ...
- JavaScript CheckBox实现全选和部分选择
<html> <head> <script> function BatchAddToBasket() { var questionNums = ''; var ch ...
- Django之博客系统:增加标签
一般在发表博客后会给每个帖子加上一个标签.类似帖子关键字的功能.在这一章中来看下如何给博客添加标签功能(tagging) 添加标签需要集成第三方的Django标签应用来完成这个功能.django-ta ...
- utf-8-BOM删除bom
utf-8 bom,去除bom //开始 function file_bom($wenjian,$remove = true) { //读取文件,将文件写入字符串 $contents = fi ...
- Percona5.6源码安装
---恢复内容开始--- 系统环境:CentOS 6.8 1.安装依赖包 yum install gcc-c++ make cmake bison bison-devel ncurses-devel ...
- Angular2使用ng2-file-upload上传文件
Angular2中有两个比较好用的上传文件的第三方库,一个是ng2-file-upload,一个是ng2-uploader.ng2-uploader是一个轻便的上传文件的支持库,功能较弱,而ng2-f ...
- web flash推流录制测试研究
用flash as3写了一段推流测试demo,参考srs_publisher和simplest_as3_rtmp_streamer.推流到srs2服务器,录制为flv文件.测试一轮结果如下: Web ...
- php字符串中去除html标签
strip_tags() 函数剥去字符串中的 HTML.XML 以及 PHP 的标签.