MATLAB常微分方程的数值解法
MATLAB常微分方程的数值解法
作者:凯鲁嘎吉 - 博客园
http://www.cnblogs.com/kailugaji/
一、实验目的
科学技术中常常要求解常微分方程的定解问题,所谓数值解法就是求未知函数在一系列离散点处的近似值。
二、实验原理

三、实验程序
1. 尤拉公式程序

四、实验内容
选一可求解的常微分方程的定解问题,分别用以上1, 4两种方法求出未知函数在
节点处的近似值,并对所求结果与分析解的(数值或图形)结果进行比较。
五、解答
1. 程序
求解初值问题
取n=10
源程序:
euler23.m:
function [A1,A2,B1,B2,C1,C2]=euler23(a,b,n,y0)
%欧拉法解一阶常微分方程
%初始条件y0
h = (b-a)/n; %步长h
%区域的左边界a
%区域的右边界b
x = a:h:b;
m=length(x); %前向欧拉法
y = y0;
for i=2:m
y(i)=y(i-1)+h*oula(x(i-1),y(i-1));
A1(i)=x(i);
A2(i)=y(i);
end
plot(x,y,'r-');
hold on; %改进欧拉法
y = y0;
for i=2:m
y(i)=y(i-1)+h/2*( oula(x(i-1),y(i-1))+oula(x(i),y(i-1))+h*(oula(x(i-1),x(i-1))));
B1(i)=x(i);
B2(i)=y(i);
end
plot(x,y,'m-');
hold on; %欧拉两步公式
y=y0;
y(2)=y(1)+h*oula(x(1),y(1));
for i=2:m-1
y(i+1)=y(i-1)+2*h*oula(x(i),y(i));
C1(i)=x(i);
C2(i)=y(i);
end
plot(x,y,'b-');
hold on; %精确解用作图
xx = x;
f = dsolve('Dy=-3*y+8*x-7','y(0)=1','x');%求出解析解
y = subs(f,xx); %将xx代入解析解,得到解析解对应的数值 plot(xx,y,'k--');
legend('前向欧拉法','改进欧拉法','欧拉两步法','解析解'); oula.m:
function f=oula(x,y)
f=-3*y+8*x-7;
2. 运算结果
A1,A2为前向欧拉法在节点处的近似值,B1,B2为改进的欧拉法在节点处的近似值,C1,C2为欧拉公式法在节点处的近似值。
>> [A1,A2,B1,B2,C1,C2]=euler23(0,1,10,1)
A1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
A2 =
0 0 -0.6200 -0.9740 -1.1418 -1.1793 -1.1255 -1.0078 -0.8455 -0.6518 -0.4363
B1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
B2 =
0 0.0050 -0.6090 -0.9563 -1.1169 -1.1468 -1.0853 -0.9597 -0.7893 -0.5875 -0.3638
C1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
C2 =
0 0 -0.2400 -0.9360 -0.5984 -1.3370 -0.3962 -1.5392 0.2473 -1.8076
>> [A1,A2,B1,B2,C1,C2]=euler23(0,1,10,1)
A1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
A2 =
0 0 -0.6200 -0.9740 -1.1418 -1.1793 -1.1255 -1.0078 -0.8455 -0.6518 -0.4363
B1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
B2 =
0 0.0050 -0.6090 -0.9563 -1.1169 -1.1468 -1.0853 -0.9597 -0.7893 -0.5875 -0.3638
C1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
C2 =
0 0 -0.2400 -0.9360 -0.5984 -1.3370 -0.3962 -1.5392 0.2473 -1.8076

3. 拓展(方法改进、体会等)
从以上图形可以看出,在n=10时,改进的欧拉法精度更高,而欧拉两步法所求结果震荡不收敛,越接近1,震荡幅度越大,于是取n=100,时,结果如下所示:

当n=1000时,结果如下图:

当n=100时,三种方法与解析解非常接近,当n=1000时,几乎四者位于一条线中,从实验结果看出,n越大时,结果越精确。
MATLAB常微分方程的数值解法的更多相关文章
- Euler-Maruyama discretization("欧拉-丸山"数值解法)
欧拉法的来源 在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解.它是一种解决常微分方程数值积分 ...
- V-rep学习笔记:机器人逆运动学数值解法(The Jacobian Transpose Method)
机器人运动学逆解的问题经常出现在动画仿真和工业机器人的轨迹规划中:We want to know how the upper joints of the hierarchy would rotate ...
- MATLAB常微分方程数值解——欧拉法、改进的欧拉法与四阶龙格库塔方法
MATLAB常微分方程数值解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.一阶常微分方程初值问题 2.欧拉法 3.改进的欧拉法 4.四阶龙格库塔 ...
- 偏微分方程数值解法的MATLAB源码
原文出处http://wenku.baidu.com/view/df412e115f0e7cd184253653.html 因为不太喜欢百度文库的格式,所以写到个人博客里面方便使用 <ifram ...
- Matlab-7:偏微分方程数值解法-李荣华-有限元解导数边界值的常微分(Galerkin方法)
p47.(实习题-李荣华)用线性元求下列边值问题的数值解 tic; % this method is transform from Galerkin method %also call it as f ...
- V-rep学习笔记:机器人逆运动学数值解法(Cyclic Coordinate Descent Method)
When performing inverse kinematics (IK) on a complicated bone chain, it can become too complex for a ...
- V-rep学习笔记:机器人逆运动学数值解法(Damped Least Squares / Levenberg-Marquardt Method)
The damped least squares method is also called the Levenberg-Marquardt method. Levenberg-Marquardt算法 ...
- V-rep学习笔记:机器人逆运动学数值解法(The Pseudo Inverse Method)
There are two ways of using the Jacobian matrix to solve kinematics. One is to use the transpose of ...
- matlab练习程序(龙格库塔法)
非刚性常微分方程的数值解法通常会用四阶龙格库塔算法,其matlab函数对应ode45. 对于dy/dx = f(x,y),y(0)=y0. 其四阶龙格库塔公式如下: 对于通常计算,四阶已经够用,四阶以 ...
随机推荐
- js a标签 + ajax 多参数穿参
<span onclick="return haoping('{$row['jv_id']}','1')"> function haoping(id,type){ $. ...
- [JZOJ5837] Omeed
Description Solution 有两种做法 一种是线段树维护一次方程系数,一种是线段树维护矩阵 准备都写一写 维护系数 首先把式子推出来 \[CS=B\times \sum\limits_{ ...
- sql多条件查询语句
如上图:三个文本可选项,那sql语句怎么写呢? 1.首先获取三个文本的值分别为Name,Age,Sex. 2.string sql="select * from 表 where 1=1&qu ...
- MyBatis(国税)
一.MyBatis概要 1.1.ORM介绍 对象关系映射(Object Relational Mapping,简称ORM,或O/RM,或O/R mapping),用于实现面向对象编程语言里不同类型系统 ...
- C#服务端判断客户端socket是否已断开的方法
刚开始,用Socket类的Connected属性来实现,却发现行不通,connected只表示 是在上次 还是 操作时连接到远程主机.如果在这之后[连接的另一方]断开了,它还一直返回true, 除非 ...
- 贝尔数(来自维基百科)& Stirling数
贝尔数 贝尔数以埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列): Bell Number Bn是基数为n的集合 ...
- HDU5293(SummerTrainingDay13-B Tree DP + 树状数组 + dfs序)
Tree chain problem Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- Thymeleaf学习记录(1)--启动模板及建立Demo
Thymeleaf是什么? Thymeleaf是适用于Web和独立环境的现代服务器端Java模板引擎.相比于JSP,Thymeleaf更简洁,渲染性能更好,维护性更好,它可以XML/XHTML/HTM ...
- java.lang.IllegalArgumentException Expected MultipartHttpServletRequest
解决方案:检查jar包,完毕无误后在Spring MVC的配置文件中加入: <!-- 需要文件上传功能时,启用以下配置 设置最大上传文件大小 10M=10*1024*1024(B)=104857 ...
- 在Centos下面FTP映射方案
前两天公司要在一台Centos的机子上,把一些文件定时备份到另外一台ftp服务器上, 在Linux系统中,mount是不支持直接挂在"ftp://192.168.1.1/backup&quo ...