MATLAB常微分方程的数值解法
MATLAB常微分方程的数值解法
作者:凯鲁嘎吉 - 博客园
http://www.cnblogs.com/kailugaji/
一、实验目的
科学技术中常常要求解常微分方程的定解问题,所谓数值解法就是求未知函数在一系列离散点处的近似值。
二、实验原理

三、实验程序
1. 尤拉公式程序

四、实验内容
选一可求解的常微分方程的定解问题,分别用以上1, 4两种方法求出未知函数在
节点处的近似值,并对所求结果与分析解的(数值或图形)结果进行比较。
五、解答
1. 程序
求解初值问题
取n=10
源程序:
euler23.m:
function [A1,A2,B1,B2,C1,C2]=euler23(a,b,n,y0)
%欧拉法解一阶常微分方程
%初始条件y0
h = (b-a)/n; %步长h
%区域的左边界a
%区域的右边界b
x = a:h:b;
m=length(x); %前向欧拉法
y = y0;
for i=2:m
y(i)=y(i-1)+h*oula(x(i-1),y(i-1));
A1(i)=x(i);
A2(i)=y(i);
end
plot(x,y,'r-');
hold on; %改进欧拉法
y = y0;
for i=2:m
y(i)=y(i-1)+h/2*( oula(x(i-1),y(i-1))+oula(x(i),y(i-1))+h*(oula(x(i-1),x(i-1))));
B1(i)=x(i);
B2(i)=y(i);
end
plot(x,y,'m-');
hold on; %欧拉两步公式
y=y0;
y(2)=y(1)+h*oula(x(1),y(1));
for i=2:m-1
y(i+1)=y(i-1)+2*h*oula(x(i),y(i));
C1(i)=x(i);
C2(i)=y(i);
end
plot(x,y,'b-');
hold on; %精确解用作图
xx = x;
f = dsolve('Dy=-3*y+8*x-7','y(0)=1','x');%求出解析解
y = subs(f,xx); %将xx代入解析解,得到解析解对应的数值 plot(xx,y,'k--');
legend('前向欧拉法','改进欧拉法','欧拉两步法','解析解'); oula.m:
function f=oula(x,y)
f=-3*y+8*x-7;
2. 运算结果
A1,A2为前向欧拉法在节点处的近似值,B1,B2为改进的欧拉法在节点处的近似值,C1,C2为欧拉公式法在节点处的近似值。
>> [A1,A2,B1,B2,C1,C2]=euler23(0,1,10,1)
A1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
A2 =
0 0 -0.6200 -0.9740 -1.1418 -1.1793 -1.1255 -1.0078 -0.8455 -0.6518 -0.4363
B1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
B2 =
0 0.0050 -0.6090 -0.9563 -1.1169 -1.1468 -1.0853 -0.9597 -0.7893 -0.5875 -0.3638
C1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
C2 =
0 0 -0.2400 -0.9360 -0.5984 -1.3370 -0.3962 -1.5392 0.2473 -1.8076
>> [A1,A2,B1,B2,C1,C2]=euler23(0,1,10,1)
A1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
A2 =
0 0 -0.6200 -0.9740 -1.1418 -1.1793 -1.1255 -1.0078 -0.8455 -0.6518 -0.4363
B1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
B2 =
0 0.0050 -0.6090 -0.9563 -1.1169 -1.1468 -1.0853 -0.9597 -0.7893 -0.5875 -0.3638
C1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
C2 =
0 0 -0.2400 -0.9360 -0.5984 -1.3370 -0.3962 -1.5392 0.2473 -1.8076

3. 拓展(方法改进、体会等)
从以上图形可以看出,在n=10时,改进的欧拉法精度更高,而欧拉两步法所求结果震荡不收敛,越接近1,震荡幅度越大,于是取n=100,时,结果如下所示:

当n=1000时,结果如下图:

当n=100时,三种方法与解析解非常接近,当n=1000时,几乎四者位于一条线中,从实验结果看出,n越大时,结果越精确。
MATLAB常微分方程的数值解法的更多相关文章
- Euler-Maruyama discretization("欧拉-丸山"数值解法)
欧拉法的来源 在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解.它是一种解决常微分方程数值积分 ...
- V-rep学习笔记:机器人逆运动学数值解法(The Jacobian Transpose Method)
机器人运动学逆解的问题经常出现在动画仿真和工业机器人的轨迹规划中:We want to know how the upper joints of the hierarchy would rotate ...
- MATLAB常微分方程数值解——欧拉法、改进的欧拉法与四阶龙格库塔方法
MATLAB常微分方程数值解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.一阶常微分方程初值问题 2.欧拉法 3.改进的欧拉法 4.四阶龙格库塔 ...
- 偏微分方程数值解法的MATLAB源码
原文出处http://wenku.baidu.com/view/df412e115f0e7cd184253653.html 因为不太喜欢百度文库的格式,所以写到个人博客里面方便使用 <ifram ...
- Matlab-7:偏微分方程数值解法-李荣华-有限元解导数边界值的常微分(Galerkin方法)
p47.(实习题-李荣华)用线性元求下列边值问题的数值解 tic; % this method is transform from Galerkin method %also call it as f ...
- V-rep学习笔记:机器人逆运动学数值解法(Cyclic Coordinate Descent Method)
When performing inverse kinematics (IK) on a complicated bone chain, it can become too complex for a ...
- V-rep学习笔记:机器人逆运动学数值解法(Damped Least Squares / Levenberg-Marquardt Method)
The damped least squares method is also called the Levenberg-Marquardt method. Levenberg-Marquardt算法 ...
- V-rep学习笔记:机器人逆运动学数值解法(The Pseudo Inverse Method)
There are two ways of using the Jacobian matrix to solve kinematics. One is to use the transpose of ...
- matlab练习程序(龙格库塔法)
非刚性常微分方程的数值解法通常会用四阶龙格库塔算法,其matlab函数对应ode45. 对于dy/dx = f(x,y),y(0)=y0. 其四阶龙格库塔公式如下: 对于通常计算,四阶已经够用,四阶以 ...
随机推荐
- Vue + Element UI 实现权限管理系统 前端篇(十六):系统备份还原
系统备份还原 在很多时候,我们需要系统数据进行备份还原.我们这里就使用MySql的备份还原命令实现系统备份还原的功能. 后台接口准备 系统备份还原是对数据库的备份还原,所以必须有后台接口的支持,我们准 ...
- visual studio code 在 mac 下按 F12无效
vsc 默认通过 F12可以查看定义(Go to Definition),可以查看类或方法的定义: 但是在 mac 环境下,有时按 F12并不生效,但是菜单栏的 Go 选项是被启动的,此时需要进行 2 ...
- Go 环境变量相关操作
Go语言中os包提供了一些环境变量的操作封装.包括: 设置环境变量:Setenv 获取环境变量:Getenv 删除指定的环境变量:Unsetenv 获取所有环境变量:Environ 清除所有环境变量: ...
- 前端错误监控,sentry入门配置详细教程
一.前言 最近经理说要把公司项目结合sentry用起来,然后组长不想做,老员工也不想做,分配任务就这么分配给我了,很荣幸接锅,摸索了几天,了解了一些基本配置,深一点的玩法可能还得实践一段时间,这里对于 ...
- 如何编写package.json配置NodeJS项目的模块声明
在NodeJS项目中,用package.json文件来声明项目中使用的模块,这样在新的环境部署时,只要在package.json文件所在的目录执行 npm install 命令即可安装所需要的模块. ...
- FLV 封装格式解析
本文为作者原创,转载请注明出处:https://www.cnblogs.com/leisure_chn/p/10662941.html FLV (Flash Video) 是由 Adobe 公司推出的 ...
- SpringBoot入门之集成Druid
Druid:为监控而生的数据库连接池.这篇先了解下它的简单使用,下篇尝试用它做多数据源配置.主要参考:https://github.com/alibaba/druid/wiki/常见问题 https: ...
- Java坦克大战(三)
关于这个坦克大战的项目是在学习Java基础的时候,拿来练习的最近看到这些代码,感觉很亲切,就把他们都复制下来,编辑成博客.回首看去,Java基础的学习确实应该建立在找项目练习上,这样才能将学到的基础知 ...
- How to Find the Standard Deviation in Minitab
Standard deviation, represented by the Greek Letter sigma σ, is a measure of dispersement in statist ...
- 精选20道Java代码笔试题
1.运算符优先级问题,下面代码的结果是多少? public class Test { public static void main(String[] args) { int k = 0; int r ...