MATLAB常微分方程的数值解法
MATLAB常微分方程的数值解法
作者:凯鲁嘎吉 - 博客园
http://www.cnblogs.com/kailugaji/
一、实验目的
科学技术中常常要求解常微分方程的定解问题,所谓数值解法就是求未知函数在一系列离散点处的近似值。
二、实验原理

三、实验程序
1. 尤拉公式程序

四、实验内容
选一可求解的常微分方程的定解问题,分别用以上1, 4两种方法求出未知函数在
节点处的近似值,并对所求结果与分析解的(数值或图形)结果进行比较。
五、解答
1. 程序
求解初值问题
取n=10
源程序:
euler23.m:
function [A1,A2,B1,B2,C1,C2]=euler23(a,b,n,y0)
%欧拉法解一阶常微分方程
%初始条件y0
h = (b-a)/n; %步长h
%区域的左边界a
%区域的右边界b
x = a:h:b;
m=length(x); %前向欧拉法
y = y0;
for i=2:m
y(i)=y(i-1)+h*oula(x(i-1),y(i-1));
A1(i)=x(i);
A2(i)=y(i);
end
plot(x,y,'r-');
hold on; %改进欧拉法
y = y0;
for i=2:m
y(i)=y(i-1)+h/2*( oula(x(i-1),y(i-1))+oula(x(i),y(i-1))+h*(oula(x(i-1),x(i-1))));
B1(i)=x(i);
B2(i)=y(i);
end
plot(x,y,'m-');
hold on; %欧拉两步公式
y=y0;
y(2)=y(1)+h*oula(x(1),y(1));
for i=2:m-1
y(i+1)=y(i-1)+2*h*oula(x(i),y(i));
C1(i)=x(i);
C2(i)=y(i);
end
plot(x,y,'b-');
hold on; %精确解用作图
xx = x;
f = dsolve('Dy=-3*y+8*x-7','y(0)=1','x');%求出解析解
y = subs(f,xx); %将xx代入解析解,得到解析解对应的数值 plot(xx,y,'k--');
legend('前向欧拉法','改进欧拉法','欧拉两步法','解析解'); oula.m:
function f=oula(x,y)
f=-3*y+8*x-7;
2. 运算结果
A1,A2为前向欧拉法在节点处的近似值,B1,B2为改进的欧拉法在节点处的近似值,C1,C2为欧拉公式法在节点处的近似值。
>> [A1,A2,B1,B2,C1,C2]=euler23(0,1,10,1)
A1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
A2 =
0 0 -0.6200 -0.9740 -1.1418 -1.1793 -1.1255 -1.0078 -0.8455 -0.6518 -0.4363
B1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
B2 =
0 0.0050 -0.6090 -0.9563 -1.1169 -1.1468 -1.0853 -0.9597 -0.7893 -0.5875 -0.3638
C1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
C2 =
0 0 -0.2400 -0.9360 -0.5984 -1.3370 -0.3962 -1.5392 0.2473 -1.8076
>> [A1,A2,B1,B2,C1,C2]=euler23(0,1,10,1)
A1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
A2 =
0 0 -0.6200 -0.9740 -1.1418 -1.1793 -1.1255 -1.0078 -0.8455 -0.6518 -0.4363
B1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
B2 =
0 0.0050 -0.6090 -0.9563 -1.1169 -1.1468 -1.0853 -0.9597 -0.7893 -0.5875 -0.3638
C1 =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000
C2 =
0 0 -0.2400 -0.9360 -0.5984 -1.3370 -0.3962 -1.5392 0.2473 -1.8076

3. 拓展(方法改进、体会等)
从以上图形可以看出,在n=10时,改进的欧拉法精度更高,而欧拉两步法所求结果震荡不收敛,越接近1,震荡幅度越大,于是取n=100,时,结果如下所示:

当n=1000时,结果如下图:

当n=100时,三种方法与解析解非常接近,当n=1000时,几乎四者位于一条线中,从实验结果看出,n越大时,结果越精确。
MATLAB常微分方程的数值解法的更多相关文章
- Euler-Maruyama discretization("欧拉-丸山"数值解法)
欧拉法的来源 在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解.它是一种解决常微分方程数值积分 ...
- V-rep学习笔记:机器人逆运动学数值解法(The Jacobian Transpose Method)
机器人运动学逆解的问题经常出现在动画仿真和工业机器人的轨迹规划中:We want to know how the upper joints of the hierarchy would rotate ...
- MATLAB常微分方程数值解——欧拉法、改进的欧拉法与四阶龙格库塔方法
MATLAB常微分方程数值解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.一阶常微分方程初值问题 2.欧拉法 3.改进的欧拉法 4.四阶龙格库塔 ...
- 偏微分方程数值解法的MATLAB源码
原文出处http://wenku.baidu.com/view/df412e115f0e7cd184253653.html 因为不太喜欢百度文库的格式,所以写到个人博客里面方便使用 <ifram ...
- Matlab-7:偏微分方程数值解法-李荣华-有限元解导数边界值的常微分(Galerkin方法)
p47.(实习题-李荣华)用线性元求下列边值问题的数值解 tic; % this method is transform from Galerkin method %also call it as f ...
- V-rep学习笔记:机器人逆运动学数值解法(Cyclic Coordinate Descent Method)
When performing inverse kinematics (IK) on a complicated bone chain, it can become too complex for a ...
- V-rep学习笔记:机器人逆运动学数值解法(Damped Least Squares / Levenberg-Marquardt Method)
The damped least squares method is also called the Levenberg-Marquardt method. Levenberg-Marquardt算法 ...
- V-rep学习笔记:机器人逆运动学数值解法(The Pseudo Inverse Method)
There are two ways of using the Jacobian matrix to solve kinematics. One is to use the transpose of ...
- matlab练习程序(龙格库塔法)
非刚性常微分方程的数值解法通常会用四阶龙格库塔算法,其matlab函数对应ode45. 对于dy/dx = f(x,y),y(0)=y0. 其四阶龙格库塔公式如下: 对于通常计算,四阶已经够用,四阶以 ...
随机推荐
- Vue + Element UI 实现权限管理系统 前端篇(十五):嵌套外部网页
嵌套外部网页 在有些时候,我们需要在我们的内容栏主区域显示外部网页.如查看服务端提供的SQL监控页面,接口文档页面等. 这个时候就要求我们的导航菜单能够解析嵌套网页的URL,并根据URL路由到相应的嵌 ...
- jquery根据name属性查找元素
$("div[id]") //选择所有含有id属性的div元素 $("input[name='newsletter']") //选择所有的name属性等于'ne ...
- python 输出颜色与样式的方法
上次遇到这个问题就想写下来,其实当时我也不怎么会,老师说这个东西不需要理解,只需要死记硬背,写的多了就记住了,所以今天搜集了几篇文章,加上自己的理解,写下了这篇python 输出颜色的样式与方法的文章 ...
- Java设计模式学习记录-享元模式
前言 享元模式也是一种结构型模式,这篇是介绍结构型模式的最后一篇了(因为代理模式很早之前就已经写过了).享元模式采用一个共享来避免大量拥有相同内容对象的开销.这种开销最常见.最直观的就是内存损耗. 享 ...
- Django组件之Middleware
一.中间件 在django的settings.py文件下,有一个变量为MIDDLEWARE,里面放的就是中间件. MIDDLEWARE = [ 'django.middleware.security. ...
- mysql中的游标使用
1.游标的作用及属性 游标的作用就是用于对查询数据库所返回的记录进行遍历,以便进行相应的操作:游标有下面这些属性: a.游标是只读的,也就是不能更新它: b.游标是不能滚动的,也就是只能在一个方向上进 ...
- WINAPI实现简易扫雷游戏
//扫雷 #include <windows.h> #include <windowsx.h> #include <strsafe.h> #include < ...
- CentOS7下查看系统环境(内存CPU磁盘使用率)
1.方法一 yum install atop --安装atop sudo atop--开启监视 2.方法二 top 3.方法三 free --查看没存情况 ps ux --查看CPU 情况 磁盘 df
- MVC之Ajax异步操作
在页面的局部通过Html.Action加载一块分布页,我们可以通过Ajax异步去更换或更新这块分布页 通过一个下拉框值发生变化的时候,我们会去从后台重新访问这个action获取一个新的View,然后替 ...
- cocoapods使用-库托管到svn或者github
下拉svn库(自定义库或者第三方库)到工程中: 1. 若未安装,请安装cocoapods: http://www.cnblogs.com/sunjianfei/p/6089231.html ...