【题目描述:】

给出一个整数 n \((n<10^{30})\) 和 k 个变换规则\((k≤15)\) 。

规则:

一位数可变换成另一个一位数:

规则的右部不能为零。

例如: n=234 。有规则( k=2 ):

2 -> 5

3 -> 6

上面的整数 234 经过变换后可能产生出的整数为(包括原数):

234

534

264

564

共 4 种不同的产生数

【问题:】

给出一个整数 n 和 k 个规则。

求出:

经过任意次的变换( 0 次或多次),能产生出多少个不同整数。

仅要求输出个数。



[算法分析:]

读入一个整数a,每一位分别为\(a_1\), \(a_2\), \(a_3\),..., \(a_n\),

设置一个数组num,num[i]表示数字i有多少种变换,

于是答案为\(num[a_1] * num[a_2] * ... * num[a_n]\)。

写出来一看,发现在

1234 3

2 3

3 2

3 5

这组数据下的结果是错误的,

2变成3后,可以继续变成5,所以2能变成的值有两个

如何统计?

f[i][j]=1 表示数字i能变成数字j,对f数组做一遍Floyed,再遍历一遍f数组即可统计。



[Code:]

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; int k;
long long num1[10];
bool a[10][10];
char n[31], ans[205], num[10][101]; int aa[205], b[205], c[205];
char ss[205];
//需用高精度
void Mul(char s1[], char s2[]) {
memset(ss, 0, sizeof(ss));
memset(aa, 0, sizeof(aa));
memset(b, 0, sizeof(b));
memset(c, 0, sizeof(c));
int lena=strlen(s1), lenb=strlen(s2); for(int i=0; i<lena; i++) aa[i] = s1[lena-i-1]-'0';
for(int i=0; i<lenb; i++) b[i] = s2[lenb-i-1]-'0';
for(int i=0; i<lena; i++)
for(int j=0; j<lenb; j++) {
c[i+j] += aa[i]*b[j];
c[i+j+1] += c[i+j]/10;
c[i+j] %= 10;
}
int lenc = lena+lenb;
while(lenc>1 && c[lenc-1]==0) lenc--; for(int i=lenc-1; i>=0; i--)
ss[lenc-i-1] = c[i] + '0';
} int main() {
for(int i=0; i<=9; ++i) num1[i] = 1;
scanf("%s%d", n, &k);
for(int i=1; i<=k; ++i) {
int x, y;
scanf("%d%d", &x, &y);
a[x][y] = 1;
}
for(int k=0; k<10; ++k)
for(int i=0; i<10; ++i)
for(int j=0; j<10; ++j)
a[i][j] |= (a[i][k] & a[k][j]);
for(int i=0; i<10; ++i)
for(int j=0; j<10; ++j)
if(a[i][j] && i!=j) {
++num1[i];
}
for(int i=0; i<10; ++i)
sprintf(num[i], "%lld", num1[i]);
int l = strlen(n);
ans[0] = '1';
for(int i=0; i<l; ++i) {
Mul(ans,num[n[i]-'0']);
strcpy(ans, ss);
}
cout << ans;
}

【洛谷】【计数原理+Floyed】P1037 产生数的更多相关文章

  1. 洛谷【P1004】方格取数

    浅谈\(DP\):https://www.cnblogs.com/AKMer/p/10437525.html 题目传送门:https://www.luogu.org/problemnew/show/P ...

  2. 洛谷 P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  3. 洛谷P1066 2^k进制数(题解)(递推版)

    https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...

  4. 洛谷1066 2^k进制数

    原题链接 大力猜结论竟然猜对了.. 对于一对\(k,w\),我们可以把\(w\)位划分成\(k\)位一段的形式,每一段就是转换成十进制后的一位,这个从题面的解释中应该可以理解. 先不考虑可能多出(即剩 ...

  5. 【洛谷】4317:花神的数论题【数位DP】

    P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...

  6. BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php? ...

  7. 洛谷P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  8. 洛谷P1976 鸡蛋饼(Catalan数)

    P1976 鸡蛋饼 题目背景 Czyzoiers 都想知道小 x 为什么对鸡蛋饼情有独钟.经过一番逼问,小 x 道出 了实情:因为他喜欢圆. 题目描述 最近小 x 又发现了一个关于圆的有趣的问题:在圆 ...

  9. 洛谷P1722 矩阵 II(Catalan数)

    P1722 矩阵 II 题目背景 usqwedf 改编系列题. 题目描述 如果你在百忙之中抽空看题,请自动跳到第六行. 众所周知,在中国古代算筹中,红为正,黑为负…… 给定一个1*(2n)的矩阵(us ...

随机推荐

  1. IDEA创建简单SSM项目使用传统Jar包

    #IDEA SSM项目使用传统Jar包 创建项目 下一步,命名 下一步,创建完成 下一步,创建资源文件夹resources 页面概览 左侧目录树 演示如下 一些简单的说明 其中包之间的层次调用 ent ...

  2. 140 - The 12th Zhejiang Provincial Collegiate Programming Contest(浙江省赛2015)

      Ace of Aces Time Limit: 2 Seconds      Memory Limit: 65536 KB There is a mysterious organization c ...

  3. javascript如何处理很多数据,类似分页切换

    需求:一个用户列表数据,如果对应列表数据大于10个,就每10个保存到二维数组,后面不足10个的依然放在二维数组尾部 用处:模拟分页,或者局部刷新 在线DEMO:戳这里 var obj=[ { &quo ...

  4. MAC MYSQ忘记密码重置方法

    网友的方法,记个笔记请勿转载. step1: 关闭mysql服务:  苹果->系统偏好设置->最下边点mysql 在弹出页面中 关闭mysql服务(点击stop mysql server) ...

  5. PHP7.27: object

    http://www.devshed.com/c/a/PHP/PHP-Services-Layers-Data-Mappers/ https://stackoverflow.com/questions ...

  6. SFTP 文件配置

    sftp_config_file SFTP配置文件(Sublime Text 3 .VS Code) VS Code 的版本 { "host": "120.01.01.1 ...

  7. 微信小程序地图报错——ret is not defined

    刚刚在使用微信的map做地图时候 发现如下报错: 后来找了一会发现错误为经纬度写反了导致经纬度超出了范围 正确取值范围: latitude   纬度  浮点数,范围 -90 ~ 90 longitud ...

  8. python之网络通信协议

    TCP/IP五层协议和OSI的七层协议: TCP和UDP的区别: Tcp协议:面向连接,数据可靠,传输效率低,面向字节流 Udp协议:面向无连接,数据不可靠,传输效率高,面向报文

  9. [20170914]tnsnames.ora的管理.txt

    [20170914]tnsnames.ora的管理.txt --//昨天朋友讲tnsnams.ora的内容太长了,而且许多不需要的.管理不方便.我记得以前写[20150409]tnsnames.ora ...

  10. drop all database objects

    /*Use this sql to drop all objects in a database.*/ -- Drop all SPdeclare @dropSp varchar(max)=''sel ...