Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.

The update(i, val) function modifies nums by updating the element at index i to val.

Example:

Given nums = [1, 3, 5]

sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8 

Note:

  1. The array is only modifiable by the update function.
  2. You may assume the number of calls to update and sumRange function is distributed evenly.

问题:给定一个固定长度的数组,可以更新元素的值,求给定子数组的元素和。求和与更新操作交替进行。

解决方案

方案1,每次求和,直接遍历子数组进行求和。每次更新,直接根据下标更新元素值。求和操作时间复杂度为 O(n), 更新操作时间复杂度为O(1)

方案2,采用线段树存储原数组以及中间结果。

例子:输入数组{1, 3, 5, 7, 9, 11} 对应的线段树数据结构如下,叶子节点存储输入数组的元素,非叶子节点存储一个区域的和。

线段树是一个 full binary tree,可以用数组来存储。数组下标和线段树的节点之间的关系如下:

对于节点 i,

  • 其左子节点下标为 i*2+1
  • 其右节点下标为 i*2+2
  • 其父亲节点下标为 (i-1)/2

基于数组的线段树表示例子如下:

求和思路:计算子数组[l, r] 的和时,对于给定节点 node 有:

  • 如果节点 node 代表的范围在 [l, r] 之内,则返回节点 node 的值
  • 如果节点 node 代表的范围完全不在 [l, r] 之内,则返回 0
  • 其他情况,节点 node 代表的范围一部分在 [l, r]之内,一部分不在之内,则对于节点 node 的左右子节点分别应用该规则进行处理。

更新思路:根据给定的下标,更新下标对应元素在线段树的叶子节点,并更新从该叶子节点到根节点路径上的所有祖先节点。

构建线段树:根据输入数组,求得线段树需要的节点值。例如 {1, 3, 5, 7, 9, 11, 4, 12, 20, 16, 36}

对节点值进行反序处理,则得到基于数组结构的线段树。例如 {36, 16, 20, 12, 4, 11, 9, 7, 5, 3, 1}

代码实现如下:

#include <vector>
using namespace std;struct TreeNode{
int val;
pair<int, int> idxRange; TreeNode(int val, int lRange, int rRange){
this->val = val;
this->idxRange = make_pair(lRange, rRange);
}
}; class NumArray { vector<int> nums;
vector<TreeNode *> nodesVec;
vector<TreeNode *> treeVec; /**
* calculate the nodes of the segment tree based on the input values in nums
*/
void calculateNodes(){
for(int i=; i < nums.size(); i++){
TreeNode *tn = new TreeNode(nums[i], i, i);
this->nodesVec.push_back(tn);
} for(int i =; i + < nodesVec.size(); i+=){
int val = nodesVec[i]->val + nodesVec[i+]->val;
int l = min(nodesVec[i]->idxRange.first, nodesVec[i+]->idxRange.first);
int r = max(nodesVec[i]->idxRange.second, nodesVec[i+]->idxRange.second);
TreeNode *tn = new TreeNode(val, l, r);
nodesVec.push_back(tn);
}
} /**
* build segment tree base on Vector.
* For node i,
* the left child index: i * 2 + 1
* the right child index: i * 2 + 2
* the parent index: (i - 1)/2
*/
void buildVectorBasedSegmentTree(){
for(int i=nodesVec.size() - ; i >= ; i--){
treeVec.push_back(nodesVec[i]);
}
} public:
NumArray(){}
virtual ~NumArray(){} /**
* initialization
*/
NumArray(vector<int> nums){
this->nums = nums;
calculateNodes();
buildVectorBasedSegmentTree();
} /**
* update the value of the node in the index i in treeVec
*/
void update(int i, int val){
int leafIdx = treeVec.size() - ( + i );
int diff = val - treeVec[leafIdx]->val;
updateNodes(leafIdx, diff);
} /**
* update the value of nodes in interval tree(segment tree) with the diff recursively.
*/
void updateNodes(int idx, int diff){
treeVec[idx]->val += diff;
if(idx > ){
idx = (idx -) / ;
updateNodes(idx, diff);
}
} int sumRange(int i, int j){
return getSum(, i, j);
} /**
* check the node in i-th index in treeVec, to calculate the sum of leaf
*/
int getSum(int nodeIdx, int rangeL, int rangeR){
TreeNode* node = treeVec[nodeIdx];
if (rangeL <= node->idxRange.first && node->idxRange.second <= rangeR){
return node->val;
} if (node->idxRange.second < rangeL || rangeR < node->idxRange.first){
return ;
}
int nodeIdxL = nodeIdx * + ;
int nodeIdxR = nodeIdx * + ;
return getSum(nodeIdxL, rangeL, rangeR) + getSum(nodeIdxR, rangeL, rangeR);
}
};

Reference:

Segment Tree | Set 1 (Sum of given range), geeksforgeeks

Segment tree, wikipedia

[LeetCode] 307. Range Sum Query - Mutable 解题思路的更多相关文章

  1. [LeetCode] 307. Range Sum Query - Mutable 区域和检索 - 可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  2. leetcode@ [307] Range Sum Query - Mutable / 线段树模板

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  3. LeetCode - 307. Range Sum Query - Mutable

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  4. leetcode 307. Range Sum Query - Mutable(树状数组)

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  5. 【刷题-LeetCode】307. Range Sum Query - Mutable

    Range Sum Query - Mutable Given an integer array nums, find the sum of the elements between indices ...

  6. [Leetcode Week16]Range Sum Query - Mutable

    Range Sum Query - Mutable 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/range-sum-query-mutable/de ...

  7. 【leetcode】307. Range Sum Query - Mutable

    题目如下: 解题思路:就三个字-线段树.这个题目是线段树用法最经典的场景. 代码如下: class NumArray(object): def __init__(self, nums): " ...

  8. 307. Range Sum Query - Mutable

    题目: Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclu ...

  9. leetcode 307 Range Sum Query

    问题描述:给定一序列,求任意区间(i, j)的元素和:修改任意一元素,实现快速更新 树状数组 树状数组的主要特点是生成一棵树,树的高度为logN.每一层的高度为k,分布在这一层的序列元素索引的二进制表 ...

随机推荐

  1. Linux源码解析-内核栈与thread_info结构详解

    1.什么是进程的内核栈? 在内核态(比如应用进程执行系统调用)时,进程运行需要自己的堆栈信息(不是原用户空间中的栈),而是使用内核空间中的栈,这个栈就是进程的内核栈 2.进程的内核栈在计算机中是如何描 ...

  2. 代理ARP--善意的欺骗

    1. 代理ARP(Proxy ARP)是什么? 顾名思义,它指通过中间设备(通常为Router)代替其他主机响应ARP请求.对于没有配置默认网关的主机想要与其他网络的另一台主机通信时,网关收到源主机的 ...

  3. Windows 下配置 Apache 支持 https

    1.打开cmd ,输入  F: // 切换到Apache安装路径,我的Apache安装目录在 F盘 2.cd F:\Apache\bin 3.set "openssl_conf = F:\A ...

  4. 17秋 软件工程 第六次作业 Beta冲刺 Scrum3

    17秋 软件工程 第六次作业 Beta冲刺 Scrum3 各个成员冲刺期间完成的任务 世强:完成手势签到模块,重构活动详情页面: 陈翔:完善超级管理员后端login模块,完成logout模块: 树民: ...

  5. [Jenkins] 如何修改jenkins上的环境变量

    现象 当本地的环境变量发生变化时,在jenkins 构建时里面访问的环境变量仍是之前旧的(未更新的)导致构建出现错误,比如我以我所遇到的问题进行简单写下,下面例子中我是涉及到修改 PYTHONPATH ...

  6. CentOS 7下安装Python3.6.4

    CentOS 7下安装Python3.5 •安装python3.6可能使用的依赖 yum install openssl-devel bzip2-devel expat-devel gdbm-deve ...

  7. [TJOI2018]教科书般的亵渎

    嘟嘟嘟 题面挺迷的,拿第一个样例说一下: 放第一次亵渎,对答案产生了\(\sum_{i = 1} ^ {10} i ^ {m + 1} - 5 ^ {m + 1}\)的贡献,第二次亵渎产生了\(\su ...

  8. ARDUINO 中断

    设置中断函数   attachInterrupt() attachInterrupt(interrupt, function, mode) 描述: 当发生外部中断时,调用一个指定函数.当中断发生时,该 ...

  9. go标准库的学习-io

    参考https://studygolang.com/pkgdoc 导入方式: import "io" o包提供了对I/O原语的基本接口.本包的基本任务是包装这些原语已有的实现(如o ...

  10. 为什么签名前要加"\x19Ethereum Signed Message:\n"

    在以太坊中,可以找到关于上述破损的解释例子.以太坊有两种消息,交易