http://codeforces.com/problemset/problem/98/E (题目链接)

题意

  A君有n张牌,B君有m张牌,桌上还有一张反扣着的牌,每张牌都不一样。

  每个回合可以做两件事中的一件

  • 猜测桌上的牌是什么,猜对则胜,猜败则输。
  • 询问对方是否有某张牌,若有则需要将其示出,否则继续游戏。

  A和B都很聪明,问A的胜率。

Solution

  碉堡了!!转自:http://blog.csdn.net/Yves___/article/details/51814024

  首先不到最后一刻是不会选择猜桌上的牌的。

  假如某一次对方问了一张自己手上没有的牌,就可能会怀疑桌上的牌就是这张。

  而询问对方是否有某张牌,我们可以选择询问自己手上有的牌,假如对方相信而去猜测这张牌的话就会输掉,我们称这样的行为作欺骗。

  记$f(n,m)$表示先手有$n$张牌,后手有$m$张牌,先手的获胜概率。

  那么就可以列一个表格,表示先手的选择以及后手的应对。

  • 先手选择猜测对方的牌

    • 后手认为先手在猜测,先手获胜的概率是$\displaystyle\frac{m}{m+1}(1-f(m-1,n))$
    • 后手认为先手在欺骗,先手获胜的概率是$\displaystyle\frac{1}{ m+1 } + \frac{m}{m+1}(1-f(m-1,n))$
  • 先手选择欺骗

    • 后手认为先手在猜测,先手获胜的概率是$\displaystyle 1$
    • 后手认为先手在欺骗,先手获胜的概率是$\displaystyle 1-f(m,n-1)$

  那么对于先手的任意一个策略,后手会选择最优的策略去使他赢的概率尽可能小。也就是说假如先手用$p$的概率选择去猜测,$1−p$的概率选择去欺骗。那么最终的贡献就是

$$\max\limits_p \left\{ \min \left\{ \frac{pm}{m+1}( 1-f( m-1, n ) )+(1-p), \frac{p}{ m+1 } + \frac{pm}{ m+1 }( 1-f( m-1, n )) + (1-p)(1-f( m, n-1)) \right\} \right\}$$

  将$p$视为自变量,问题就转化为两条直线取$min$的问题,求个交点就可以得到最大值。

细节

  直线的交点别求错了。。

代码

// codeforces 98E
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; double g[1010][1010]; double f(int n,int m) {
if (!n) return 1.0/(m+1);
if (!m) return 1.0;
if (g[n][m]) return g[n][m];
double A=(1-f(m-1,n))*m/(m+1);
double B=(1-f(m-1,n))*m/(m+1)+1.0/(m+1);
double C=1.0;
double D=1-f(m,n-1);
double p=(D-C)/((A-C)-(B-D));
return g[n][m]=p*A+(1-p)*C;
}
int main() {
int n,m;
scanf("%d%d",&n,&m);
printf("%.10lf %.10lf",f(n,m),1-f(n,m));
return 0;
}

【Codeforces 98E】 Help Shrek and Donkey的更多相关文章

  1. 【Codeforces 98E】 Help Shrek and Donkey 游戏策略神题

    from http://www.cnblogs.com/MashiroSky/p/6576398.html A君有n张牌,B君有m张牌,桌上还有一张反扣着的牌,每张牌都不一样. 每个回合可以做两件事中 ...

  2. 【codeforces 415D】Mashmokh and ACM(普通dp)

    [codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...

  3. 【codeforces 707E】Garlands

    [题目链接]:http://codeforces.com/contest/707/problem/E [题意] 给你一个n*m的方阵; 里面有k个联通块; 这k个联通块,每个连通块里面都是灯; 给你q ...

  4. 【codeforces 707C】Pythagorean Triples

    [题目链接]:http://codeforces.com/contest/707/problem/C [题意] 给你一个数字n; 问你这个数字是不是某个三角形的一条边; 如果是让你输出另外两条边的大小 ...

  5. 【codeforces 709D】Recover the String

    [题目链接]:http://codeforces.com/problemset/problem/709/D [题意] 给你一个序列; 给出01子列和10子列和00子列以及11子列的个数; 然后让你输出 ...

  6. 【codeforces 709B】Checkpoints

    [题目链接]:http://codeforces.com/contest/709/problem/B [题意] 让你从起点开始走过n-1个点(至少n-1个) 问你最少走多远; [题解] 肯定不多走啊; ...

  7. 【codeforces 709C】Letters Cyclic Shift

    [题目链接]:http://codeforces.com/contest/709/problem/C [题意] 让你改变一个字符串的子集(连续的一段); ->这一段的每个字符的字母都变成之前的一 ...

  8. 【Codeforces 429D】 Tricky Function

    [题目链接] http://codeforces.com/problemset/problem/429/D [算法] 令Si = A1 + A2 + ... + Ai(A的前缀和) 则g(i,j) = ...

  9. 【Codeforces 670C】 Cinema

    [题目链接] http://codeforces.com/contest/670/problem/C [算法] 离散化 [代码] #include<bits/stdc++.h> using ...

随机推荐

  1. SpringMVC环境搭建——HelloWorld

    1.新建Maven Web 工程: 2.添加相关的依赖包(Spring MVC.tomcat插件等),具体的pom.xml文件如下 <project xmlns="http://mav ...

  2. 几何学观止(Riemann流形部分)

    上承这个页面,相较之前,增加了古典的曲线曲面论,这部分介绍得很扼要,Riemann流形介绍得也很快,花了仅仅30页就介绍到了Gauss-Bonnet公式.同时配上了提示完整的习题. 几何学观止-Rie ...

  3. Dubbo原理和源码解析之“微内核+插件”机制

    github新增仓库 "dubbo-read"(点此查看),集合所有<Dubbo原理和源码解析>系列文章,后续将继续补充该系列,同时将针对Dubbo所做的功能扩展也进行 ...

  4. Python-str-操作-6

    #字符串的索引与切片 s = 'ABCDLSESRF' #索引 s1 = s[0] print(s1) s2 = s[2] print(s2) s3 = s[-1] print(s3) s4 = s[ ...

  5. sublime text3 安装package control 出现问题解决过程记录

    1.安装package control 失败 通过最简单的自动安装 package control 失败(详见package control官网). 报错展示: File "./python ...

  6. Bing词典案例分析

    一.调研评测 Bug 1 : 当鼠标移动到可点击的地方的时候,光标的样子并没有变成手指状而是插入符号状.这影响了用户对按钮是否可用的判断,也会让用户在一定程度上不适应,不利于软件的长期发展. Bug  ...

  7. 《linux内核设计与分析》内核模块编程

    内核模块编程 一.准备工作 虚拟机:VMware Workstation 12操作系统:ubuntu当前内核版本:linux-headers-4.4.0-22-generic 二.有关于内核模块的知识 ...

  8. github 心得体会

     https://github.com/xu123/text 学习了很多知识感觉很有趣 git config :配置git git add:更新working directory中的文件至stagin ...

  9. TCP报文格式详解

    TCP报文是TCP层传输的数据单元,也叫报文段. 1.端口号:用来标识同一台计算机的不同的应用进程. 1)源端口:源端口和IP地址的作用是标识报文的返回地址. 2)目的端口:端口指明接收方计算机上的应 ...

  10. [Wiki].NET框架

    .NET框架 建议将.NET Framework 3.0并入本条目或章节.(讨论)  .NET框架 .NET框架的组件堆栈 开发者 Microsoft 初始版本 2002年2月13日,​16年前 稳定 ...