题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1012

现在请求你维护一个数列,要求提供以下两种操作: 1、 查询操作。语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。限制:L不超过当前数列的长度。 2、 插入操作。语法:A n 功能:将n加上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取模,将所得答案插入到数列的末尾。限制:n是非负整数并且在长整范围内。注意:初始时数列是空的,没有一个数。

Input

第一行两个整数,M和D,其中M表示操作的个数(M <= 200,000),D如上文中所述,满足(0

Output

对于每一个查询操作,你应该按照顺序依次输出结果,每个结果占一行。

算法分析:起初咋一看,可以用线段树做,于是就做了,迅速搞之,交之,WA...,为啥了,不应该呀,查代码,又交之,WA,,,无语中,后来突然想起了,C++提交得用lld呀,平常习惯了I64d了,买了个表的。

不过这道题可以用单调栈做,而且代码比线段树更简单。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define inf 0x7fffffff
using namespace std;
typedef long long LL;
const int maxn=+; LL M,D;
LL cnt,an[maxn],sum[maxn<<]; void PushUP(LL rt) {sum[rt]=max(sum[rt<<],sum[rt<<|]); } void build(LL l,LL r,LL rt)
{
sum[rt]=-inf;
if (l==r) return;
LL mid=(l+r)>>;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
PushUP(rt);
} void update(LL l,LL r,LL rt,LL p,LL value)
{
if (l==r) {sum[rt]=value;return; }
LL mid=(l+r)>>;
if (p<=mid) update(l,mid,rt<<,p,value);
else update(mid+,r,rt<<|,p,value);
PushUP(rt);
} LL query(LL l,LL r,LL rt,LL x,LL y)
{
if (x<=l && r<=y) return sum[rt];
LL mid=(l+r)>>;
LL ret=-inf;
if (y<=mid) ret=max(ret,query(l,mid,rt<<,x,y));
else if (x>mid) ret=max(ret,query(mid+,r,rt<<|,x,y));
else
{
ret=max(ret,query(l,mid,rt<<,x,y));
ret=max(ret,query(mid+,r,rt<<|,x,y));
}
PushUP(rt);
return ret;
} int main()
{
while (scanf("%lld%lld",&M,&D)!=EOF)
{
memset(sum,,sizeof(sum));
LL t=,N=M;
char ch[];
LL l,v;
cnt=;
build(,M,);
for (LL i= ;i<M ;i++)
{
scanf("%s",ch);
if (ch[]=='A')
{
scanf("%lld",&v);
v=(v+t)%D;
update(,N,,++cnt,v);
}
else
{
scanf("%lld",&l);
LL ans=query(,N,,cnt-l+,cnt);
printf("%lld\n",ans);
t=ans;
}
}
}
return ;
}

BZOJ 1012: [JSOI2008]最大数maxnumber 线段树的更多相关文章

  1. bzoj 1012: [JSOI2008]最大数maxnumber (线段树)

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 13081  Solved: 5654[Subm ...

  2. bzoj-1012 1012: [JSOI2008]最大数maxnumber(线段树)

    题目链接: 1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MB Description 现在请求你维护一个数列,要 ...

  3. 1012: [JSOI2008]最大数maxnumber 线段树

    https://www.lydsy.com/JudgeOnline/problem.php?id=1012 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数 ...

  4. BZOJ 1012: [JSOI2008]最大数maxnumber【线段树单点更新求最值,单调队列,多解】

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 10374  Solved: 4535[Subm ...

  5. BZOJ 1012: [JSOI2008]最大数maxnumber 单调队列/线段树/树状数组/乱搞

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 4750  Solved: 2145[Submi ...

  6. BZOJ-1012[JSOI2008]最大数maxnumber 线段树区间最值

    这道题相对简单下面是题目: 1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MB Submit: 6542 Solve ...

  7. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  8. 【BZOJ 1012】 [JSOI2008]最大数maxnumber(线段树做法)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1012 [题意] [题解] 预开一个20W长度的线段树; 这里a[1..20W]={0} ...

  9. BZOJ 1012 [JSOI2008]最大数maxnumber【线段树】

    水题,每次记录一下当前有多少个数,然后按照题目所指示的那样模拟就行,每次向线段树末尾插入(其实是修改)题目中指定的数,然后询问当前的个数到前面Q个数中最大值是多少结果就是,好久不碰线段树了,用数组模拟 ...

随机推荐

  1. encodeURIComponent编码后java后台的解码

    解决方法一: JavaScript: window.self.location="searchbytext.action?searchtext="+encodeURICompone ...

  2. 1)C++对象大小计算

          C++对象的大小不同的编译器的实现是不一样的,以下仅讨论.net2003,其他编译的可能出现的结果以下也做了分析和猜测.在反推不同编译器实现的C++对象的大小时.对齐是一个很重要也容易被遗 ...

  3. 浅谈DEs,AES

    1. AES加密,相对比较简单,之前已经配置好工具类. package com.bbguoxue.poetry.util; import java.security.SecureRandom; imp ...

  4. Simple Shopping Cart By AngularJS

    <body ng-controller='CartController'> <h1>Your Order</h1> <div ng-repeat='item ...

  5. shell脚本调用spark-sql

    为了更方便的查询并产生报表, 需要使用shell脚本调用spark-sql spark/bin/spark-sql --master spark://host:7077 -f ${SQL_FILE} ...

  6. linux的一点小随笔

    随意写的一些东西,也就为以后自己可能看看... 1.vim安装,sudo apt-get install vim-gtk,于是vim就安装好了.当然在我电脑上还出现了gvim,简单的vim配置(etc ...

  7. Android无法连接adb的解决方法

    今天在折腾乐蛙时发现无法链接ADB了,但是手机却显示USB调试模式! 然后想起了大蛋曾经告诉我CM的解决方法,于是你懂得,俺差点就把菊花给卖了呢(/Д`)~゚。 adb shell rm -r /da ...

  8. 【Inno Setup】 Inno Setup 64位安装程序默认安装路径

    在脚本中加入: ArchitecturesInstallIn64BitMode=x64 ArchitecturesAllowed=x64

  9. ED/EP系列6《扩展应用》

    包括:电子钱包复合应用:电子钱包灰锁应用. 1. 复合应用模式 Ø INITIALIZE FOR CAPP PURCHASE(复合应用消费初始化): Ø UPDATE CAPP DATA CACHE( ...

  10. EMVTag系列6《IAC 发卡行行为代码》

    R(需求):数据应存在,在读应用数据过程中,终端不检查:将变成必备 L: 5 IAC 的值,最好不要自定义,最好和所选的模板完全匹配.如果修改持卡人认证位,PIN Bypass 相关的位.如果有业务需 ...