试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$

证明 (from Hansschwarzkopf): 对任何$x>0$, 有 \[x\ln\left(1+\frac{1}{x}\right)=x\ln\frac{1+\frac{1}{2x+1}}{1-\frac{1}{2x+1}} =2x\left(\frac{1}{2x+1}+\frac{1}{3(2x+1)^3}+\ldots\right)>\frac{2x}{2x+1} >\ln \frac{2ex}{2x+1},\] 故 \[\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.\]

[再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)的更多相关文章

  1. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  2. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  3. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  4. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  5. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  6. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  7. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. 怎么修改mysql密码

    1.用root 进入mysql后mysql>set password =password('你的密码');mysql>flush privileges; 2.使用GRANT语句 mysql ...

  2. linux下修改tomcat的默认目录

    1.修改tomcat的默认目录.它的默认目录是webapps/ROOT,对应的conf目录下的server.xml里的内容是: 1.修改tomcat的默认目录.它的默认目录是webapps/ROOT, ...

  3. 解决Ext.form.DateField在浏览器中显示可能有问题

    解决Ext.form.DateField在浏览器中显示可能有问题,界面将会拉的很长很长.如下图:  办法: 1:设置css的长度 .x-date-menu { padding-top:2px;padd ...

  4. 3、Object对象的两大方法(hashCode-equals)总结

    Object类是所有java类的父类. 用户定义了如下一个Person类 public class Person{} 在类定义中并没有明确继承Object类,但是编译器会自动的完成这个过程. 既然所有 ...

  5. 转:C# 通过委托更新UI(异步加载)

    来自:http://blog.csdn.net/gongzhe2011/article/details/27351853 using System.Windows.Forms; using Syste ...

  6. spring springmvc mybatis 整合

    环境 apache-tomcat-8.0.33.jdk1.8.0_05 maven Dynamic Web Module 2.5 1.各个xml配置文件的配置 (1)pom.xml 配置清单文件 连接 ...

  7. asp.net收藏和设为首页的代码

    1:设为首页 <a href="javascript:void(0);" id="setHomePage" onclick="this.styl ...

  8. Java 异常 —— java.io.InvalidClassException: javax.xml.namespace.QName; local class incompatible

    项目中有个 WebService 接口,调试时使用 Main 方法运行,别人的机器上都能运行,就笔者的机器出问题.他们说是RP的问题…… 异常信息: java.io.InvalidClassExcep ...

  9. python列表推导式详解

    推导式是Python中很强大的.很受欢迎的特性,具有语言简洁,简化代码,速度快等优点.推导式包括:1.列表推导式2.字典推导式3.集合推导式4.嵌套列表推导式注意: 字典和集合推导是最近才加入到Pyt ...

  10. C#图片切割、图片压缩、缩略图生成

    C#图片切割.图片压缩.缩略图生成的实现代码 /// 图片切割函数  /// </summary>  /// <param name="sourceFile"&g ...