Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the la
 
题意比较难懂,难点也在于转换题意
题意:找a-b所有路径中最大步数里面最小的
 
本来先用最小生成树写的,但是没写出来:
 #include<iostream>
#include<string.h>
#include<cmath>
#include<iomanip>
#define inf 0x3f3f3f3f
using namespace std;
//kruskal int n,p; struct edge
{
double x;
double y;
}e[]; double addedge[];
int f[];
double pre[]; double cmp1(double x,double y)
{
return x<y;
} double d(double x1,double y1,double x2,double y2)
{
return sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
} void init()
{
for(int i=;i<p;i++)
f[i]=i;
return ;
} int getf(int x)
{
if(f[x]==x)
return x;
return getf[f[x]];
} int merge(int x,int y)
{
int t1=merge(x);
int t2=merge(y);
if(t1!=t2)
{
f[t2]=t1;
return ;
}
return ;
} int main()
{
std::ios::sync_with_stdio(false);
cin.tie();
cout.tie(); while(cin>>n)
{
if(n==)
break;
memset(e,,sizeof(e));
memset(addedge,,sizeof(addedge));
memset(f,,sizeof(f));
for(int i=;i<n;i++)
cout<<e[i].x<<e[i].y;
p=;//p条边
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
addedge[p++]=d(e[i].x,e[i].y,e[j].x,e[j].y);
}
}
sort(addedge+,addedge+p+,cmp1); init();
int minmaxx=-inf;
int countt=;
int q=;
for(int i=;i<p;i++)
{
for(int j=i+;j<p;j++)
{
if(merge(addedge[i],addedge[j])==)//说明还未连通
{
countt++;
pre[q++]=
minmaxx=max(minmaxx,) }
if(countt==p-)
break;
} } int tt=;
cout<<"Scenario #"<<tt++<<endl;
cout<<"Frog Distance = ";
cout<<setiosflags(ios::fixed)<<setprecision()<<dis<<endl;
}
return ;
}

AC的是用那个五行代码过的:

 #include<iostream>
#include<string.h>
#include<cmath>
#include<iomanip>
#define inf 0x3f3f3f3f
using namespace std; //点点之间的距离floyd
//找a-b所有路径中最大步数里面最小的
struct edge
{
// double x;
// double y;
int x;
int y;
} e[]; double a[][];
int n; double d(int x1,int y1,int x2,int y2)
{
return sqrt(((x2-x1)*(x2-x1)*1.0+(y2-y1)*(y2-y1)*1.0)*1.0);
} void init()
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if(i==j)
a[i][j]=;
else
a[i][j]=inf;
}
}
} int main()
{
std::ios::sync_with_stdio(false);
cin.tie();
cout.tie();
int tt=;
while(cin>>n)
{
if(n==)
break;
memset(e,,sizeof(e));
memset(a,,sizeof(a));
init();
for(int i=; i<=n; i++)//n个顶点
cin>>e[i].x>>e[i].y; // p=1;//p条边 for(int i=; i<=n; i++)
{
for(int j=i+; j<=n; j++)
{
// addedge[p++]=d(e[i].x,e[i].y,e[j].x,e[j].y); double dd=d(e[i].x,e[i].y,e[j].x,e[j].y);
if(a[i][j]>dd||a[j][i]>dd)
{
a[j][i]=a[i][j]=dd;
}
}
}
// sort(addedge+1,addedge+p+1,cmp1);
for(int k=;k<=n;k++)
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
//if(a[i][j]a[i][k]+a[k][j])
a[i][j]=min(a[i][j],max(a[i][k],a[k][j]));
}
}
}
double dis=a[][];
cout<<"Scenario #"<<tt++<<endl;
cout<<"Frog Distance = ";
cout<<setiosflags(ios::fixed)<<setprecision()<<dis<<endl<<endl;
}
return ;
}

POJ-2253-Frogger-/Floyd-Warshall/的更多相关文章

  1. POJ 2253 Frogger Floyd

    原题链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  2. POJ 2253 Frogger floyd算法

    题目:click here 题意: 给出两只青蛙的坐标A.B,和其他的n-2个坐标,任意两坐标间是双向连通的.显然从A到B存在至少一条的通路,每一条通路的元素都是这条通路中前后两个点的距离,这些距离中 ...

  3. POJ 2253 Frogger(warshall算法)

    题意:湖中有很多石头,两只青蛙分别位于两块石头上.其中一只青蛙要经过一系列的跳跃,先跳到其他石头上,最后跳到另一只青蛙那里.目的是求出所有路径中最大变长的最小值(就是在到达目的地的路径中,找出青蛙需要 ...

  4. 最短路(Floyd_Warshall) POJ 2253 Frogger

    题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...

  5. POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)

    POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...

  6. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

  7. POJ 2253 Frogger(dijkstra 最短路

    POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...

  8. POJ 2253 Frogger

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  9. poj 2253 Frogger 最小瓶颈路(变形的最小生成树 prim算法解决(需要很好的理解prim))

    传送门: http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  10. poj 2253 Frogger (dijkstra最短路)

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

随机推荐

  1. SolidWorks新建三维零件

    1.创建工作目录. 2.新建一个零件三维模型文件. 3.创建零件中的各个特征 (1).创建第一个特征(基础特征) ①选择命令 ②创建截面草图 定义草图平面 定义截面草图 完成草图 ③定义深度等属性 定 ...

  2. JavaScript: 变量提升和函数提升

    第一篇文章中提到了变量的提升,所以今天就来介绍一下变量提升和函数提升.这个知识点可谓是老生常谈了,不过其中有些细节方面博主很想借此机会,好好总结一下. 今天主要介绍以下几点: 1. 变量提升 2. 函 ...

  3. 8-26接口压力测试-3Jmeter-Java请求

    1.新建maven工程 2.导入依赖,并使用shade将所需的依赖打入jar包 <?xml version="1.0" encoding="UTF-8"? ...

  4. NX二次开发-UFUN创建倒圆UF_MODL_create_blend

    NX9+VS2012 #include <uf.h> #include <uf_modl.h> UF_initialize(); //创建块 UF_FEATURE_SIGN S ...

  5. NX二次开发-UFUN获取圆锥参数UF_MODL_ask_cone_parms

    NX11+VS2013 #include <uf.h> #include <uf_modl.h> #include <uf_ui.h> UF_initialize( ...

  6. python爬虫教程之美丽汤(一)

    python 爬虫之美丽汤 BeautifulSoup 作者: jwang106 1. 使用requests获取网页的html源码 import requests from bs4 import Be ...

  7. ionic-CSS:ionic checkbox(复选框)

    ylbtech-ionic-CSS:ionic checkbox(复选框) 1.返回顶部 1. ionic checkbox(复选框) ionic 里面的 Checkbox 和普通的 Checkbox ...

  8. Spring随笔-核心知识DI与AOP

    DI 依赖注入,使得相互依赖的组件松耦合. AOP 面向切面编程,使各种功能分离出来,形成可重用的组件.

  9. 基于Netty的RPC架构学习笔记(三):netty客户端

    文章目录 举个

  10. 8分钟带你深入浅出搞懂Nginx

    Nginx是一款轻量级的Web服务器.反向代理服务器,由于它的内存占用少,启动极快,高并发能力强,在互联网项目中广泛应用. 图基本上说明了当下流行的技术架构,其中Nginx有点入口网关的味道. 反向代 ...