Matrix Power Series
给出矩阵A,求矩阵\(A+A^2+...+A^k\)各个元素\(mod\ yyb\)的值,\(n\leq 30,k\leq 10^9,yyb\leq 10^4\)。
解
法一:分治
显然是数列题,故数列最浅显的减法是分治,寻找其中重复计算的部分,故可以
\]
\]
\]
对式子主体进行分治,其他的部分快速幂即可。
参考代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
using namespace std;
int n,yyb;
struct matrix{
int jz[30][30];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();ri int i;
for(i=0;i<n;++i)jz[i][i]|=true;
}
il void read(){
ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
scanf("%d",&jz[i][j]);
}
il void print(){
ri int i,j;
for(i=0;i<n;++i,putchar('\n'))
for(j=0;j<n;++j)
printf("%d ",jz[i][j]);
putchar('\n');
}
il matrix operator*(matrix x){
matrix y;y.clear();ri int i,j,k;
for(i=0;i<n;++i)
for(j=0;j<n;y.jz[i][j]%=yyb,++j)
for(k=0;k<n;++k)
y.jz[i][j]+=jz[i][k]*x.jz[k][j]%yyb;
return y;
}
il matrix operator+(matrix x){
matrix y;ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
y.jz[i][j]=(jz[i][j]+x.jz[i][j])%yyb;
return y;
}template<class free>
il matrix operator^(free y){
matrix x(*this),ans;ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}state,unit,zero;
il matrix efen(int);
int main(){
int k,i;
scanf("%d%d%d",&n,&k,&yyb);
unit.unit(),state.read();
efen(k).print();
return 0;
}
il matrix efen(int y){
if(!y)return unit;
if(y==1)return state;
return ((state^(y>>1))+unit)*efen(y>>1)
+((y&1)?(state^y):zero);
}
法二:矩阵快速幂
显然数列的题目,经常会存在递推方程,于是矩阵快速幂会在其中大有用武之地,于是设\(f_i=A+A^2+...+A^i\),不难有递推方程\(f_i=f_{i-1}+A^i\),于是我们可以同时转移\(f_i,A^i\),故状态矩阵为
\]
转移矩阵为
\]
以此矩阵中套矩阵仿照套路即可。
参考代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
using namespace std;
int n,yyb;
struct matrix1{
int jz[30][30];
il void read(){
ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
scanf("%d",&jz[i][j]);
}
il void print(){
ri int i,j;
for(i=0;i<n;++i,putchar('\n'))
for(j=0;j<n;++j)
printf("%d ",jz[i][j]);
putchar('\n');
}
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();ri int i;
for(i=0;i<n;++i)jz[i][i]|=true;
}
il matrix1 operator*(matrix1 x){
matrix1 y;y.clear();
ri int i,j,k;
for(i=0;i<n;++i)
for(j=0;j<n;y.jz[i][j]%=yyb,++j)
for(k=0;k<n;++k)
y.jz[i][j]+=jz[i][k]*x.jz[k][j]%yyb;
return y;
}
il matrix1 operator+(matrix1 x){
matrix1 y;ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
y.jz[i][j]=(jz[i][j]+x.jz[i][j])%yyb;
return y;
}template<class free>
il matrix1 operator^(free y){
matrix1 ans,x(*this);ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}A;
struct matrix2{
matrix1 jz[2][2];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();ri int i;
for(i=0;i<2;++i)jz[i][i].unit();
}
il matrix2 operator*(matrix2 x){
matrix2 y;y.clear();
ri int i,j,k;
for(i=0;i<2;++i)
for(j=0;j<2;++j)
for(k=0;k<2;++k)
y.jz[i][j]=y.jz[i][j]+jz[i][k]*x.jz[k][j];
return y;
}template<class free>
il matrix2 operator^(free y){
matrix2 ans,x(*this);ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}state,tran;
int main(){
int k;
scanf("%d%d%d",&n,&k,&yyb);
A.read(),state.jz[0][0]=A;
tran.jz[0][0]=A,tran.jz[0][1].unit();
tran.jz[1][1].unit(),state=state*(tran^k);
state.jz[0][1].print();
return 0;
}
法三:倍增前缀和优化
数列求和可以利用倍增优化,主要思想是维护\(A^{2^i}\),这个显然可通过\(A^{2^{i+1}}=(A^{2^i})^2\)来暴力递推,再维护一个倍增的数列,\(f_i=A^1+A^2+...+A^{2^i}\),不难得知其转移方程为\(f_i=f_{i-1}A^{2^{i-1}}+f_{i-1}\),而这个的维护也可以暴力维护,于是对于我们的求和,以\(A+A^2+...+A^{15}\)为例,有
\]
\]
\]
\]
于是按照这个先维护好一段倍增前缀和,再对后式提公因式,继续利用倍增前缀和优化,不停地继续,即可得到答案,当然你也可以递归处理,以下参考程序用的是非递归的方式。
参考代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
using namespace std;
int n,yyb;
struct matrix{
int jz[30][30];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();ri int i;
for(i=0;i<n;++i)jz[i][i]|=true;
}
il void read(){
ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
scanf("%d",&jz[i][j]);
}
il void print(){
ri int i,j;
for(i=0;i<n;putchar('\n'),++i)
for(j=0;j<n;++j)
printf("%d ",jz[i][j]);
putchar('\n');
}
il matrix operator*(matrix x){
matrix y;ri int i,j,k;y.clear();
for(i=0;i<n;++i)
for(j=0;j<n;y.jz[i][j]%=yyb,++j)
for(k=0;k<n;++k)
y.jz[i][j]+=jz[i][k]*x.jz[k][j]%yyb;
return y;
}
il matrix operator+(matrix x){
matrix y;ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
y.jz[i][j]=(jz[i][j]+x.jz[i][j])%yyb;
return y;
}
}A,p[31],sum[31],ans,jilu;
int main(){
int k,i;
scanf("%d%d%d",&n,&k,&yyb);
A.read(),p[0]=A,jilu.unit(),sum[0]=A;
for(i=1;i<=30;++i)p[i]=p[i-1]*p[i-1];
for(i=1;i<=30;++i)sum[i]=sum[i-1]*p[i-1]+sum[i-1];
for(i=30;i>=0;--i)
if(k>>i&1){
ans=ans+sum[i]*jilu;
jilu=jilu*p[i];
}ans.print();
return 0;
}
总上所诉,不难得知数列题目的一般求法,矩阵快速幂和分治,而特殊地对于数列前缀和的问题,我们可以利用倍增前缀和优化,但无论如何,数列问题绝不只一条道路通往罗马。
Matrix Power Series的更多相关文章
- 线性代数(矩阵乘法):POJ 3233 Matrix Power Series
Matrix Power Series Description Given a n × n matrix A and a positive integer k, find the sum S = ...
- C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速
Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: ...
- POJ 3233 Matrix Power Series(二分等比求和)
Matrix Power Series [题目链接]Matrix Power Series [题目类型]二分等比求和 &题解: 这题我原来用vector写的,总是超时,不知道为什么,之后就改用 ...
- POJ 3233 Matrix Power Series (矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 11954 Accepted: ...
- 构造矩阵解决这个问题 【nyoj299 Matrix Power Series】
矩阵的又一个新使用方法,构造矩阵进行高速幂. 比方拿 nyoj299 Matrix Power Series 来说 给出这样一个递推式: S = A + A2 + A3 + - + Ak. 让你求s. ...
- POJ 3233 Matrix Power Series(矩阵快速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 ...
- POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K To ...
- [ACM] POJ 3233 Matrix Power Series (求矩阵A+A^2+A^3...+A^k,二分求和或者矩阵转化)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15417 Accepted: ...
- poj 3233 Matrix Power Series(矩阵二分,高速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15739 Accepted: ...
- [POJ3233]Matrix Power Series 分治+矩阵
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [POJ3233]Matrix Power Series 分治+矩阵 题目大意 A为n×n(n<= ...
随机推荐
- mysql数据库分页查询优化
原博:MySQL单表百万数据记录分页性能优化 limit优化 当数据很多需要进行分页查询时:需要先查出第一条数据的id然后根据id查询大于id的数据 limt 一页的数据量 1. 直接用limit ...
- hdu多校第五场1002 (hdu6625) three arrays 字典树/dfs
题意: 给你两个序列a,b,序列c的某位是由序列a,b的此位异或得来,让你重排序列ab,找出字典序最小的序列c. 题解: 如果能找到a,b序列中完全一样的值当然最好,要是找不到,那也尽量让低位不一样. ...
- 5.RabbitMQ 客户端控制消息
1.生产者发送消息,消费者结束消息并回执 2.通过channel.basicConsume向服务器发送回执,删除服务上的消息 3.//不向服务器发送回执,服务器的消息一直存在 4.//消费者拒绝接受消 ...
- django中related_name的作用和用法
其实可以就理解为,一对多关系拿对象的解决 可以把引用理解为主从关系 主引用从,即一对多 , 注意外键字段是放在多的一端的,比如一个班级class 有很多同学 students,那么就在students ...
- i++ 和 ++i 的区别
先说运算规则吧. i++ 是先赋值后自增:++i 是先自增后赋值. 以下是代码示例: int a=0; int b=0; int i=0; a=i++; System.out.println(&quo ...
- C盘清理垃圾
经常清理C盘垃圾,会让系统运行更快,避免死机,今天教大家一种简单实用的方法,用文本文档清理垃圾: 1:在电脑桌面空白处右键-建立文本文档: 2:把以下代码复制到文本里 @echo offecho 正在 ...
- UEditor 编辑模板
读取模板,放到ueditor中进行编辑 @model WeiXin_Shop.Models.WX_GoodsDetails @Html.Partial("_MasterPage") ...
- 2019牛客暑期多校训练营(第七场) E 线段树+离散化
题目传送门 题意:按照一定的公式给出若干个$<l,r>$,每次往一个序列中加上l到r的数字,并输出中位数. 思路:需要将每个$区间$离散化,比如把$[1,2]$变成$[1,3)$,也就是$ ...
- es 3.0 、es 5.0 、es 6.0
es 5.0 的严格模式 “use strict” /在页面最顶端写启动全局 es 5.0 严格模式 为什么使用字符串可以 向下兼容 ,,不会报错 可以写在局部方法中,推荐使用 (例如 不再兼容es ...
- Linux的s、t、i、a权限(转)
原文链接:http://blog.chinaunix.net/uid-712656-id-2678715.html 文件权限除了r.w.x外还有s.t.i.a权限: s:文件属主和组设置SUID和GU ...