Matrix Power Series

给出矩阵A,求矩阵\(A+A^2+...+A^k\)各个元素\(mod\ yyb\)的值,\(n\leq 30,k\leq 10^9,yyb\leq 10^4\)。

法一:分治

显然是数列题,故数列最浅显的减法是分治,寻找其中重复计算的部分,故可以

\[A+A^2+...+A^{k/2}+A^{k/2+1}+...+A^k=
\]

\[A+A^2+...+A^{k/2}+A^{k/2}(A+...+A^{k/2})+(k\&1)A^k=
\]

\[(A^{k/2}+1)(A+...+A^{k/2})+(k\&1)A^k
\]

对式子主体进行分治,其他的部分快速幂即可。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
using namespace std;
int n,yyb;
struct matrix{
int jz[30][30];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();ri int i;
for(i=0;i<n;++i)jz[i][i]|=true;
}
il void read(){
ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
scanf("%d",&jz[i][j]);
}
il void print(){
ri int i,j;
for(i=0;i<n;++i,putchar('\n'))
for(j=0;j<n;++j)
printf("%d ",jz[i][j]);
putchar('\n');
}
il matrix operator*(matrix x){
matrix y;y.clear();ri int i,j,k;
for(i=0;i<n;++i)
for(j=0;j<n;y.jz[i][j]%=yyb,++j)
for(k=0;k<n;++k)
y.jz[i][j]+=jz[i][k]*x.jz[k][j]%yyb;
return y;
}
il matrix operator+(matrix x){
matrix y;ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
y.jz[i][j]=(jz[i][j]+x.jz[i][j])%yyb;
return y;
}template<class free>
il matrix operator^(free y){
matrix x(*this),ans;ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}state,unit,zero;
il matrix efen(int);
int main(){
int k,i;
scanf("%d%d%d",&n,&k,&yyb);
unit.unit(),state.read();
efen(k).print();
return 0;
}
il matrix efen(int y){
if(!y)return unit;
if(y==1)return state;
return ((state^(y>>1))+unit)*efen(y>>1)
+((y&1)?(state^y):zero);
}

法二:矩阵快速幂

显然数列的题目,经常会存在递推方程,于是矩阵快速幂会在其中大有用武之地,于是设\(f_i=A+A^2+...+A^i\),不难有递推方程\(f_i=f_{i-1}+A^i\),于是我们可以同时转移\(f_i,A^i\),故状态矩阵为

\[\begin{bmatrix}A_i&f_{i-1}\end{bmatrix}
\]

转移矩阵为

\[\begin{bmatrix}A&I\\0&I\end{bmatrix}
\]

以此矩阵中套矩阵仿照套路即可。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
using namespace std;
int n,yyb;
struct matrix1{
int jz[30][30];
il void read(){
ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
scanf("%d",&jz[i][j]);
}
il void print(){
ri int i,j;
for(i=0;i<n;++i,putchar('\n'))
for(j=0;j<n;++j)
printf("%d ",jz[i][j]);
putchar('\n');
}
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();ri int i;
for(i=0;i<n;++i)jz[i][i]|=true;
}
il matrix1 operator*(matrix1 x){
matrix1 y;y.clear();
ri int i,j,k;
for(i=0;i<n;++i)
for(j=0;j<n;y.jz[i][j]%=yyb,++j)
for(k=0;k<n;++k)
y.jz[i][j]+=jz[i][k]*x.jz[k][j]%yyb;
return y;
}
il matrix1 operator+(matrix1 x){
matrix1 y;ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
y.jz[i][j]=(jz[i][j]+x.jz[i][j])%yyb;
return y;
}template<class free>
il matrix1 operator^(free y){
matrix1 ans,x(*this);ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}A;
struct matrix2{
matrix1 jz[2][2];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();ri int i;
for(i=0;i<2;++i)jz[i][i].unit();
}
il matrix2 operator*(matrix2 x){
matrix2 y;y.clear();
ri int i,j,k;
for(i=0;i<2;++i)
for(j=0;j<2;++j)
for(k=0;k<2;++k)
y.jz[i][j]=y.jz[i][j]+jz[i][k]*x.jz[k][j];
return y;
}template<class free>
il matrix2 operator^(free y){
matrix2 ans,x(*this);ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}state,tran;
int main(){
int k;
scanf("%d%d%d",&n,&k,&yyb);
A.read(),state.jz[0][0]=A;
tran.jz[0][0]=A,tran.jz[0][1].unit();
tran.jz[1][1].unit(),state=state*(tran^k);
state.jz[0][1].print();
return 0;
}

法三:倍增前缀和优化

数列求和可以利用倍增优化,主要思想是维护\(A^{2^i}\),这个显然可通过\(A^{2^{i+1}}=(A^{2^i})^2\)来暴力递推,再维护一个倍增的数列,\(f_i=A^1+A^2+...+A^{2^i}\),不难得知其转移方程为\(f_i=f_{i-1}A^{2^{i-1}}+f_{i-1}\),而这个的维护也可以暴力维护,于是对于我们的求和,以\(A+A^2+...+A^{15}\)为例,有

\[A+A^2+...+A^{15}=f_3+A^9+...+A^{15}=
\]

\[f_3+A^8(A+...+A^7)=f_3+A^8(f_2+A^5+A^6+A^7)=
\]

\[f_3+A^8[f_2+A^4(A+A^2+A^3)]=
\]

\[f_3+A^8[f_2+A^4(f_1+A^2A^1)]=f_3+A^8[f_2+A^4(f_1+A^2f_0)]
\]

于是按照这个先维护好一段倍增前缀和,再对后式提公因式,继续利用倍增前缀和优化,不停地继续,即可得到答案,当然你也可以递归处理,以下参考程序用的是非递归的方式。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
using namespace std;
int n,yyb;
struct matrix{
int jz[30][30];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();ri int i;
for(i=0;i<n;++i)jz[i][i]|=true;
}
il void read(){
ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
scanf("%d",&jz[i][j]);
}
il void print(){
ri int i,j;
for(i=0;i<n;putchar('\n'),++i)
for(j=0;j<n;++j)
printf("%d ",jz[i][j]);
putchar('\n');
}
il matrix operator*(matrix x){
matrix y;ri int i,j,k;y.clear();
for(i=0;i<n;++i)
for(j=0;j<n;y.jz[i][j]%=yyb,++j)
for(k=0;k<n;++k)
y.jz[i][j]+=jz[i][k]*x.jz[k][j]%yyb;
return y;
}
il matrix operator+(matrix x){
matrix y;ri int i,j;
for(i=0;i<n;++i)
for(j=0;j<n;++j)
y.jz[i][j]=(jz[i][j]+x.jz[i][j])%yyb;
return y;
}
}A,p[31],sum[31],ans,jilu;
int main(){
int k,i;
scanf("%d%d%d",&n,&k,&yyb);
A.read(),p[0]=A,jilu.unit(),sum[0]=A;
for(i=1;i<=30;++i)p[i]=p[i-1]*p[i-1];
for(i=1;i<=30;++i)sum[i]=sum[i-1]*p[i-1]+sum[i-1];
for(i=30;i>=0;--i)
if(k>>i&1){
ans=ans+sum[i]*jilu;
jilu=jilu*p[i];
}ans.print();
return 0;
}

总上所诉,不难得知数列题目的一般求法,矩阵快速幂和分治,而特殊地对于数列前缀和的问题,我们可以利用倍增前缀和优化,但无论如何,数列问题绝不只一条道路通往罗马。

Matrix Power Series的更多相关文章

  1. 线性代数(矩阵乘法):POJ 3233 Matrix Power Series

    Matrix Power Series   Description Given a n × n matrix A and a positive integer k, find the sum S = ...

  2. C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速

    Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: ...

  3. POJ 3233 Matrix Power Series(二分等比求和)

    Matrix Power Series [题目链接]Matrix Power Series [题目类型]二分等比求和 &题解: 这题我原来用vector写的,总是超时,不知道为什么,之后就改用 ...

  4. POJ 3233 Matrix Power Series (矩阵乘法)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 11954   Accepted:  ...

  5. 构造矩阵解决这个问题 【nyoj299 Matrix Power Series】

    矩阵的又一个新使用方法,构造矩阵进行高速幂. 比方拿 nyoj299 Matrix Power Series 来说 给出这样一个递推式: S = A + A2 + A3 + - + Ak. 让你求s. ...

  6. POJ 3233 Matrix Power Series(矩阵快速幂)

    Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 ...

  7. POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】

    任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K To ...

  8. [ACM] POJ 3233 Matrix Power Series (求矩阵A+A^2+A^3...+A^k,二分求和或者矩阵转化)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15417   Accepted:  ...

  9. poj 3233 Matrix Power Series(矩阵二分,高速幂)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15739   Accepted:  ...

  10. [POJ3233]Matrix Power Series 分治+矩阵

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [POJ3233]Matrix Power Series 分治+矩阵 题目大意 A为n×n(n<= ...

随机推荐

  1. hdu多校第八场 1009 (hdu6665) Calabash and Landlord 计算几何/dfs

    题意: 给定两个矩形,输出这两个矩形把平面分成了多少块. 题解: 本来是道计算几何的大讨论,被我生生写成了bfs. 离散化边,注意不重合的边中间要空出来一格,四周也要空出来一圈,然后暴力bfs计算一共 ...

  2. 简单HOOK SSDT实现文件防删除

    http://www.rosoo.net/a/201001/8347.html

  3. hexo中加入点击出现小红心的特效会导致无法双击选中和连续点击三次选中一整行的操作

    文章目录 问题描述 解决 个人博客:https://mmmmmm.me 源码:https://github.com/dataiyangu/dataiyangu.github.io 问题描述 如题,我们 ...

  4. C不同变量类型存储大小引发的BUG

    #include"stdio.h" typedef signed char int8; typedef unsigned char uint8; typedef signed sh ...

  5. Python3 From Zero——{最初的意识:004~迭代器和生成器}

    一.反向迭代:reversed() >>> a [1, 2, 3, 4] >>> for x in reversed(a): ... print(x, end=' ...

  6. 关于private,default,protected,public,成员变量访问权限

    关于private,protected,public,default成员变量的访问权限,请参阅上图! 子类要访问父类的private成员变量,必须采用采用get方法: eg: public class ...

  7. decimate、end、interp、resample工具箱函数

  8. spark自定义函数之——UDAF使用详解及代码示例

    UDAF简介 UDAF(User Defined Aggregate Function)即用户定义的聚合函数,聚合函数和普通函数的区别是什么呢,普通函数是接受一行输入产生一个输出,聚合函数是接受一组( ...

  9. 【CF516D】Drazil and Morning Exercise

    题目 首先我们知道,在树上距离一个点最远的点一定是直径的两个端点之一 首先两遍\(\rm dfs\)把直径求出来,定义\(d(u)\)表示点\(u\)距离其最远点的距离,有了直径我们就能求出\(d\) ...

  10. 在 Mac 上使用 `sed` 命令的几个坑

    不可忽略的备份格式 sed -i 's/hello/world/g' hello.text 上面这行代码,可以在 linux 上运行,作用是将找到的 hello 替换为 world,并且直接保存修改到 ...