2161. 围攻

(File IO): input:siege.in output:siege.out

时间限制: 1000 ms  空间限制: 262144 KB  具体限制  

Goto ProblemSet

题目描述

经过刘邦的严密缉查,项羽的位置也就水落石出了。刘邦便趁机集合军队,进行对项羽的围攻。为了增加胜率,张良研究出一种全新的战法,目的就是一举打败难缠的项羽。
  这种军队共有N个单位,一个接着一个排成一排,每个单位可以是士兵,或者是战车,这样的组合可以爆发出意想不到的强大战斗力;但有一点,两辆战车不能相邻,否则会发生剐蹭等不好的事故。刘邦希望知道这N个单位的军队都多少种不同的排列方法,以便在战场中随机应变。两种军队的排列方法是不同的,当且仅当某一个单位对应不同,如:第i位这种是士兵,那种是战车……

输入

输入仅一行,一个整数N。

输出

输出仅一行,一个整数,表示排列的方案数。
 答案对 10^8+7 取模

样例输入

3

样例输出

5

数据范围限制

对于30%的数据:N≤15;
  对于70%的数据:N≤10^6;
  对于100%的数据:N≤10^18。

提示

样例解释

以0表示士兵,1表示战车,则全部方案如下:000,100,010,001,101。

Solution

这道题是什么题?组合?数列?暴力枚举?搜索剪枝?

先打个表压压惊……

Algorithm1

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
#define re register
using namespace std; long long n,ans;
IL void dfs(int depth,bool last)
{
if(depth>=n) {
ans++;
return;
}
if(!last) dfs(depth+,);
dfs(depth+,);
}
int main()
{
// freopen("siege.in","r",stdin);
// freopen("siege_table.out","w",stdout);
for(n=;n<=;n++)
{
cout<<"n="<<n<<endl;
ans=;
dfs(,);
cout<<ans<<endl;
}
return ;
}

table

打表找规律,暴力出奇迹

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

//速度太慢了,后略……

好了,规律已找到,就是从2:1开始的斐波那契数列嘛

(然而我并没有看到取模,于是在打完表后我就去写高精度了)

证明呢?

别问我……下午听完讲后再证明吧……

Algorithm2

当然是:

暴力递推,边算边取模!

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
#define re register
using namespace std; int main()
{
// freopen("siege.in","r",stdin);
// freopen("siege.out","w",stdout);
re unsigned int n,x=,y=,t,mo=1e8+;
cin>>n;
while(--n)
{
t=x;
x=x+y;
y=t;
while(x>=mo)
x-=mo;
}
printf("%d",x);
return ;
}

经过我多次实验,

while+减法比%要快一倍

register+局部变量比无register的全局变量也要快一点点

每次只需要让x取模

y和t也会变小

以及

这还是拿不到100分!

Algorithm3

好吧……我之前在洛谷上做过这道题的算法版(只是没有这些背景)

然而,我忘记了……

洛谷P1962 斐波那契数列

对于100%的数据,n<=10^18,一些公式可以利用

公式一

f(2n)=f(n)^2-f(n-1)^2=(2f(n-1)+f(n))*f(n)

公式二

f(2n+1)=f(n+1)^2+f(n)^2

证明

下午再说……

这样的话,只要对n进行二进制运算就可以了O(log(n))

顺便加一个数组存已经计算好的斐波那契数,方便以后调用

(不过10^18貌似存不下,考虑使用map)

Code3

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
#define re register
using namespace std;
map<int,int>fbnq;
long long mo=1e8+;
IL long long f(long long num)
{
if(num==) return ;
if(num==) return ;
if(num==) return ;
if(fbnq.find(num)!=fbnq.end()) return fbnq[num];
long long ans=,n=num>>;
if(num&)
{
ans=f(n+)*f(n+)%mo;
ans+=f(n)*f(n)%mo;
}
else
{
ans=*(f(n-))%mo+f(n);
ans%=mo;
ans*=f(n); }
ans%=mo;
fbnq[num]=ans;
return ans;
}
int main()
{
// freopen("siege.in","r",stdin);
// freopen("siege.out","w",stdout);
long long n;
cin>>n;
printf("%lld",f(n+));
return ;
}

Attention

最好都开long long以防还没取模就溢出了!

还有许多细节可以优化

但是我饿了

纪中2019-08-23 12:32:06

哎……

纪中23日c组T3 2161. 【2017.7.11普及】围攻 斐波那契数列的更多相关文章

  1. 纪中23日c组T2 2159. 【2017.7.11普及】max 洛谷P1249 最大乘积

    纪中2159. max 洛谷P1249 最大乘积 说明:这两题基本完全相同,故放在一起写题解 纪中2159. max (File IO): input:max.in output:max.out 时间 ...

  2. Java算法求最大最小值,冒泡排序,斐波纳契数列一些经典算法<不断更新中>

    清明在家,无聊,把一些经典的算法总结了一下. 一.求最大,最小值 Scanner input=new Scanner(System.in); int[] a={21,31,4,2,766,345,2, ...

  3. 找斐波那契数列中的第N个数——递归与函数自调用算法

    题目描述 Description 用递归的方法求斐波那契数列中的第N个数 输入输出格式 Input/output 输入格式:一行,一个正整数n输出格式: 一行,一个数,表示斐波那契数列中的第N个数  ...

  4. 算法之路(三)----查找斐波纳契数列中第 N 个数

    算法题目 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: * 前2个数是 0 和 1 . * 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, 1 ...

  5. Python中斐波那契数列的赋值逻辑

    斐波那契数列 斐波那契数列又称费氏数列,是数学家Leonardoda Fibonacci发现的.指的是0.1.1.2.3.5.8.13.21.34.······这样的数列.即从0和1开始,第n项等于第 ...

  6. Python中斐波那契数列的四种写法

    在这些时候,我可以附和着笑,项目经理是决不责备的.而且项目经理见了孔乙己,也每每这样问他,引人发笑.孔乙己自己知道不能和他们谈天,便只好向新人说话.有一回对我说道,“你学过数据结构吗?”我略略点一点头 ...

  7. golang中通过递归或通道实现斐波那契数列

    1. 循环实现 package main import "fmt" func fibonacciFor(nums int) (s1 []int) { // 循环实现斐波那切数列 n ...

  8. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  9. 纪中18日c组模拟赛

    T2 GMOJ2127. 电子表格 (File IO): input:excel.in output:excel.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制   ...

随机推荐

  1. 20190708三人开黑CF模拟赛

    7月8号晚上8点和两位巨佬开了一场虚拟cf: [Helvetic Coding Contest 2018 online mirror (teams allowed, unrated)] 我这么蔡,只A ...

  2. qt creator源码全方面分析(2-1)

    目录 coding-style.html 提交代码 二进制兼容性和源代码兼容性 代码构造 格式化 利用标识符 空格 大括号 圆括号 换行符 声明 命名空间 模式与实践 命名空间 传递文件名 插件扩展点 ...

  3. 深入理解python(一)python语法总结:基础知识和对python中对象的理解

    用python也用了两年了,趁这次疫情想好好整理下. 大概想法是先对python一些知识点进行总结,之后就是根据python内核源码来对python的实现方式进行学习,不会阅读整个源码,,,但是应该会 ...

  4. Linux用户在第一次登录时强制更改初始密码

    迫使用户更改密码 如果你想迫使用户更改其密码,请使用下面这个命令. $ sudo chage -d0 <user-name>   最初,“-d <N>”选项应该被设成密码的“有 ...

  5. ffmpeg常用数据结构

    from :http://my.oschina.net/u/555701/blog/56748 AVCodecContext 这是一个描述编解码器上下文的数据结构,包含了众多编解码器需要的参数信息,如 ...

  6. vs2017项目上传到github

    如果要把项目提交到一个厂库里面,需要建个git存储库,比如选择新建git库选择VSVIEW文件夹,以后在这个文件夹下的项目,提交时都会提交到VSVIEW这个github仓库 选择的文件夹不在git文件 ...

  7. 用Java实现简单的网络聊天程序

    Socket套接字定义: 套接字(socket)是一个抽象层,应用程序可以通过它发送或接收数据,可对其进行像对文件一样的打开.读写和关闭等操作.套接字允许应用程序将I/O插入到网络中,并与网络中的其他 ...

  8. 2018icpc南京现场赛-I Magic Potion(最大流)

    题意: n个英雄,m个怪兽,第i个英雄可以打第i个集合里的怪兽,一个怪兽可以在多个集合里 有k瓶药水,每个英雄最多喝一次,可以多打一只怪兽,求最多打多少只 n,m,k<=500 思路: 最大流, ...

  9. How to check sqlsever table data type identity status ?

    Unlike in Oracle, sqlserver has an special data type in order by make identity growth. But what abou ...

  10. 基于MATLAB的单级倒立摆仿真

    有关代码及word文档请关注公众号“浮光倾云”,后台回复A010.02即可获取 一.单级倒立摆概述 倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆,是一类典型的快速.多变量.非线性.强耦 ...