2161. 围攻

(File IO): input:siege.in output:siege.out

时间限制: 1000 ms  空间限制: 262144 KB  具体限制  

Goto ProblemSet

题目描述

经过刘邦的严密缉查,项羽的位置也就水落石出了。刘邦便趁机集合军队,进行对项羽的围攻。为了增加胜率,张良研究出一种全新的战法,目的就是一举打败难缠的项羽。
  这种军队共有N个单位,一个接着一个排成一排,每个单位可以是士兵,或者是战车,这样的组合可以爆发出意想不到的强大战斗力;但有一点,两辆战车不能相邻,否则会发生剐蹭等不好的事故。刘邦希望知道这N个单位的军队都多少种不同的排列方法,以便在战场中随机应变。两种军队的排列方法是不同的,当且仅当某一个单位对应不同,如:第i位这种是士兵,那种是战车……

输入

输入仅一行,一个整数N。

输出

输出仅一行,一个整数,表示排列的方案数。
 答案对 10^8+7 取模

样例输入

3

样例输出

5

数据范围限制

对于30%的数据:N≤15;
  对于70%的数据:N≤10^6;
  对于100%的数据:N≤10^18。

提示

样例解释

以0表示士兵,1表示战车,则全部方案如下:000,100,010,001,101。

Solution

这道题是什么题?组合?数列?暴力枚举?搜索剪枝?

先打个表压压惊……

Algorithm1

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
#define re register
using namespace std; long long n,ans;
IL void dfs(int depth,bool last)
{
if(depth>=n) {
ans++;
return;
}
if(!last) dfs(depth+,);
dfs(depth+,);
}
int main()
{
// freopen("siege.in","r",stdin);
// freopen("siege_table.out","w",stdout);
for(n=;n<=;n++)
{
cout<<"n="<<n<<endl;
ans=;
dfs(,);
cout<<ans<<endl;
}
return ;
}

table

打表找规律,暴力出奇迹

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

n=

//速度太慢了,后略……

好了,规律已找到,就是从2:1开始的斐波那契数列嘛

(然而我并没有看到取模,于是在打完表后我就去写高精度了)

证明呢?

别问我……下午听完讲后再证明吧……

Algorithm2

当然是:

暴力递推,边算边取模!

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
#define re register
using namespace std; int main()
{
// freopen("siege.in","r",stdin);
// freopen("siege.out","w",stdout);
re unsigned int n,x=,y=,t,mo=1e8+;
cin>>n;
while(--n)
{
t=x;
x=x+y;
y=t;
while(x>=mo)
x-=mo;
}
printf("%d",x);
return ;
}

经过我多次实验,

while+减法比%要快一倍

register+局部变量比无register的全局变量也要快一点点

每次只需要让x取模

y和t也会变小

以及

这还是拿不到100分!

Algorithm3

好吧……我之前在洛谷上做过这道题的算法版(只是没有这些背景)

然而,我忘记了……

洛谷P1962 斐波那契数列

对于100%的数据,n<=10^18,一些公式可以利用

公式一

f(2n)=f(n)^2-f(n-1)^2=(2f(n-1)+f(n))*f(n)

公式二

f(2n+1)=f(n+1)^2+f(n)^2

证明

下午再说……

这样的话,只要对n进行二进制运算就可以了O(log(n))

顺便加一个数组存已经计算好的斐波那契数,方便以后调用

(不过10^18貌似存不下,考虑使用map)

Code3

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define IL inline
#define re register
using namespace std;
map<int,int>fbnq;
long long mo=1e8+;
IL long long f(long long num)
{
if(num==) return ;
if(num==) return ;
if(num==) return ;
if(fbnq.find(num)!=fbnq.end()) return fbnq[num];
long long ans=,n=num>>;
if(num&)
{
ans=f(n+)*f(n+)%mo;
ans+=f(n)*f(n)%mo;
}
else
{
ans=*(f(n-))%mo+f(n);
ans%=mo;
ans*=f(n); }
ans%=mo;
fbnq[num]=ans;
return ans;
}
int main()
{
// freopen("siege.in","r",stdin);
// freopen("siege.out","w",stdout);
long long n;
cin>>n;
printf("%lld",f(n+));
return ;
}

Attention

最好都开long long以防还没取模就溢出了!

还有许多细节可以优化

但是我饿了

纪中2019-08-23 12:32:06

哎……

纪中23日c组T3 2161. 【2017.7.11普及】围攻 斐波那契数列的更多相关文章

  1. 纪中23日c组T2 2159. 【2017.7.11普及】max 洛谷P1249 最大乘积

    纪中2159. max 洛谷P1249 最大乘积 说明:这两题基本完全相同,故放在一起写题解 纪中2159. max (File IO): input:max.in output:max.out 时间 ...

  2. Java算法求最大最小值,冒泡排序,斐波纳契数列一些经典算法<不断更新中>

    清明在家,无聊,把一些经典的算法总结了一下. 一.求最大,最小值 Scanner input=new Scanner(System.in); int[] a={21,31,4,2,766,345,2, ...

  3. 找斐波那契数列中的第N个数——递归与函数自调用算法

    题目描述 Description 用递归的方法求斐波那契数列中的第N个数 输入输出格式 Input/output 输入格式:一行,一个正整数n输出格式: 一行,一个数,表示斐波那契数列中的第N个数  ...

  4. 算法之路(三)----查找斐波纳契数列中第 N 个数

    算法题目 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: * 前2个数是 0 和 1 . * 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, 1 ...

  5. Python中斐波那契数列的赋值逻辑

    斐波那契数列 斐波那契数列又称费氏数列,是数学家Leonardoda Fibonacci发现的.指的是0.1.1.2.3.5.8.13.21.34.······这样的数列.即从0和1开始,第n项等于第 ...

  6. Python中斐波那契数列的四种写法

    在这些时候,我可以附和着笑,项目经理是决不责备的.而且项目经理见了孔乙己,也每每这样问他,引人发笑.孔乙己自己知道不能和他们谈天,便只好向新人说话.有一回对我说道,“你学过数据结构吗?”我略略点一点头 ...

  7. golang中通过递归或通道实现斐波那契数列

    1. 循环实现 package main import "fmt" func fibonacciFor(nums int) (s1 []int) { // 循环实现斐波那切数列 n ...

  8. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  9. 纪中18日c组模拟赛

    T2 GMOJ2127. 电子表格 (File IO): input:excel.in output:excel.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制   ...

随机推荐

  1. CAD制图系列之怎么画平行线

    CAD怎么画平行线 输入O,点空格,输入距离100,选择已知的线,往你要偏移的方向就好! 具体方法如下:1.打开CAD制图 2.输入快捷键O 3.按下空格键 4.输入你所要的距离,例如12,并按下空格 ...

  2. 微信小程序框架分析小练手(一)——猫眼电影底部标签导航制作

    旧版猫眼电影底部有4个标签导航:电影.影院.发现.我的,如下图所示: 一.首先,打开微信开发者工具,新建一个项目:movie.如下图: 二.建立如下的一些目录: 三.将底部标签导航图标的素材放到ima ...

  3. 18、DHCP

    Dynamic Host Configuration Protocol DHCP的前身:Bootstrap DHCP的封装 DHCP基本知识点 1 .DHCP协议在RFC2131中定义,使用udp协议 ...

  4. The import java.io cannot be resolved (类库无法解析的问题解决 )

    导入一个新项目后常会出现 The import java.io cannot be resolved String cannot be resolved to a type 其原因在于没有导入需要的包 ...

  5. 【Qt学习笔记】Qt+VS2010的配置

    http://blog.csdn.net/jocyln9026/article/details/8575218 关于Qt Qt是1991年由Trolltech公司开发的一个跨平台的C++图形用户界面应 ...

  6. jsp连接mysql案例

    下载mysql-connector-java-5.1.26 将mysql-connector-java-5.1.26-bin.jar放在\jdk\jre\lib\ext中 -------------- ...

  7. [python之路]格式化显示

    格式化显示 格式规范微语言 中文版 以下整理自 python字符串格式化 *输出结果的空格在md预览中没效果(用代码块三个撇号就可以保留格式了) 一.使用格式化符来格式化字符串: Python支持的所 ...

  8. Codeforces 1197E Count The Rectangles(树状数组+扫描线)

    题意: 给你n条平行于坐标轴的线,问你能组成多少个矩形,坐标绝对值均小于5000 保证线之间不会重合或者退化 思路: 从下到上扫描每一条纵坐标为y的水平的线,然后扫描所有竖直的线并标记与它相交的线,保 ...

  9. 使用IDEA详解Spring中依赖注入的类型(上)

    使用IDEA详解Spring中依赖注入的类型(上) 在Spring中实现IoC容器的方法是依赖注入,依赖注入的作用是在使用Spring框架创建对象时动态地将其所依赖的对象(例如属性值)注入Bean组件 ...

  10. 四步搞定Zabbix 日志文件监控

    Zabbix 日志文件监控 一.给运行Zabbix agent的用户授予要监控日志的读取权限. 1. 執行下面的命令,追加app的可讀權限: setfacl -m u:app:r-- /var/log ...