BitMap概述

本文介绍 BitMap 算法的应用背景,算法思想和相关实现细节。

概括而言,BitMap 主要用来解决海量数据中元素查询,去重、以及排序等问题。这里对海量数据场景的强调,似乎暗示了这个算法对空间的利用相当的精巧和经济,事实确实如此。

BitMap算法

本来数据序列的排序是一个平凡的任务,现有的多种排序算法,都有各自擅场能适应不同情形的具体要求。但我们考虑这样一个场景:有一台内存为 4 GB 的 PC,其硬盘中的一个存储了 30 亿个无符号整型数据文件,这些整数一行一个且无重复。现在需要我们对这个文件中的数据进行排序后输出。

简单计算不难得到,这个数据文件的大小为 \(4⋅3⋅10^9/2^{30}\) 约为 11.2 GB,显然将这个数据文件直接读入内存是办不到的。能否强行利用现有的内存 size 来存储这些数据呢?答案是可能的,此时 BitMap 算法就该 C 位亮相了。BitMap 的想法相当精妙,它对整型数据作了一种转化,使得这个办不到的存储成为可能。我们这里忽略不同语言的设定,假设一个 int 整数占 4 个字节,即32 bit,如果我们能用一个 bit 位来标示一个 int 整数,那么需要的存储空间将大大减少,估算一下可知,30亿个整数需要的内存空间为 \(4⋅3⋅10^9/8/2^{20}\) 大概为 357.6 MB,这样,我们可以轻易将这 30 亿个 int 数放到内存中进行处理。

具体而言,BitMap 对数据的转化可简述如下:

一个整型 int 占 4 bytes,共32位,我们申请一个 int 长度为 N//32 + 1 的数组,即可存储完这些数据,其中 N 表示要进行查找的最大整数,这可以经读取遍历一轮数据获得。通过数组中的每个元素在内存在占 32 位对应表示十进制数 0-31,故可得到 BitMap 表:

array[0] 可表示 0-31

array[1] 可表示 32-63

array[2] 可表示 64-95

...

下面就只剩下如何将十进制数转换为对应的二进制 bit 位,实现以 1 当 32 的效果,显然,这部分实现只需用到一些位运算操作,具体细节见下面的代码示例。不难看出,Bitmap 排序需要的时间复杂度和空间复杂度依赖于数据中最大的数字。

代码实现

from array import array

class BitMap:
def __init__(self):
self.n = 5
self.bitsize = 1 << self.n
self.typecode = 'I' # 32位unsighed整型
self.lowerbound = 0 # 若数组中有负数,则所有数都减去最小的那个负数 @staticmethod
def greater_power2n(x):
i = 1
while True:
y = x >> i
x |= y
if y == 0:
break
i <<= 1
return x + 1 def load(self, inp):
'''
一般情形,数据应该是流式读取,这里简化起见不失一般性,将数据直接全部读完
'''
mini = min(inp)
if mini < 0:
self.lowerbound = -mini # 如果数组中有<0的数,则所有数都要减去最小的那个负数
inp = [i + self.lowerbound for i in inp]
maxi = max(inp)
num_arr = max(self.greater_power2n(maxi) >> self.n, 1) # 至少应该使用一个数组
self.arr = array(self.typecode, [0] * num_arr)
for x in inp:
self._set(x) def _set(self, x, set_val=True):
'''
将x在数组中对应元置为1
'''
arr_idx = x >> self.n # 元素在第几个数组中,等价于x // 2**self.n
bit_idx = x & (self.bitsize - 1) # 元素在相应数组中的第几个bit位,等价于x % 2**self.n
if set_val:
self.arr[arr_idx] |= 1 << bit_idx
else:
self.arr[arr_idx] &= ~(1 << bit_idx) def search(self, x):
if self.lowerbound != 0:
x += self.lowerbound
arr_idx = x >> self.n
bit_idx = x & (self.bitsize - 1)
existence = True if self.arr[arr_idx] & (1 << bit_idx) else False
return existence def sort(self):
sorted_seq = []
for arr_idx, a in enumerate(self.arr):
for bit_idx in range(self.bitsize):
if a & (1 << bit_idx):
sorted_seq.append(arr_idx * self.bitsize + bit_idx - self.lowerbound)
return sorted_seq def show_bitmap(self):
for i, a in enumerate(self.arr):
print('The {}th array elements: {:032b}'.format(i, a))

运行测试

>>> bitmap = BitMap()
>>> bitmap.load([-3, 2, 56, -34, 40, 21, 99, 25])
>>> bitmap.search(21), bitmap.search(3)
(True, False)
>>> bitmap.sort()
[-34, -3, 2, 21, 25, 40, 56, 99]

参考资料

黑胡同里の猫,详解BitMap算法,https://www.520mwx.com/view/59057

位图算法及其实现,BitMap,https://www.pythonf.cn/read/84436

Python | BitMap算法及其实现的更多相关文章

  1. BitMap算法及其实现(Python)

    BitMap概述 本文介绍 BitMap 算法的应用背景,算法思想和相关实现细节. 概括而言,BitMap 主要用来解决海量数据中元素查询,去重.以及排序等问题.这里对海量数据场景的强调,似乎暗示了这 ...

  2. BitMap算法知识笔记以及在大数据方向的使用

    概述 所谓的BitMap算法就是位图算法,简单说就是用一个bit位来标记某个元素所对应的value,而key即是该元素,由于BitMap使用了bit位来存储数据,因此可以大大节省存储空间,这是很常用的 ...

  3. Python基础算法综合:加减乘除四则运算方法

    #!usr/bin/env python# -*- coding:utf-8 -*-#python的算法加减乘除用符号:+,-,*,/来表示#以下全是python2.x写法,3.x以上请在python ...

  4. BitMap算法应用:Redis队列滤重优化

    工作中有用到Redis滤重队列. 原来的方法如下: 方法一 为了保证操作原子性,使用Redis执行Lua脚本. 在脚本中的逻辑是,如果队列不超过某个数值,进行一次lrem操作(队列使用list结构), ...

  5. bitmap算法

    概述 所谓bitmap就是用一个bit位来标记某个元素对应的value,而key即是这个元素.由于采用bit为单位来存储数据,因此在可以大大的节省存储空间 算法思想 32位机器上,一个整形,比如int ...

  6. xsank的快餐 » Python simhash算法解决字符串相似问题

    xsank的快餐 » Python simhash算法解决字符串相似问题 Python simhash算法解决字符串相似问题

  7. 经典算法题每日演练——第十一题 Bitmap算法

    原文:经典算法题每日演练--第十一题 Bitmap算法 在所有具有性能优化的数据结构中,我想大家使用最多的就是hash表,是的,在具有定位查找上具有O(1)的常量时间,多么的简洁优美, 但是在特定的场 ...

  8. BitMap 算法

    什么是 BigMap 算法 所谓 BitMap 就是用一个 bit 位来标记某个元素对应的 value,而 key 即是这个元素.由于采用bit为单位来存储数据,因此在可以大大的节省存储空间. 算法思 ...

  9. 【算法与数据结构专场】BitMap算法基本操作代码实现

    上篇我们讲了BitMap是如何对数据进行存储的,没看过的可以看一下[算法与数据结构专场]BitMap算法介绍 这篇我们来讲一下BitMap这个数据结构的代码实现. 回顾下数据的存储原理 一个二进制位对 ...

  10. 浅谈bitmap算法

    一.bitmap算法思想 32位机器上,一个整形,比如int a; 在内存中占32bit位,可以用对应的32bit位对应十进制的0-31个数,bitmap算法利用这种思想处理大量数据的排序与查询.  ...

随机推荐

  1. 【Javaweb】做一个房产信息管理系统二

    由于我还不太熟练用sql语句写数据库,所以直接用navicate了 我们需要新建四个数据表: adimin(超级管理员信息) customer(顾客) property(房产信息) realestat ...

  2. Netty源码学习7——netty是如何发送数据的

    零丶引入 系列文章目录和关于我 经过<Netty源码学习4--服务端是处理新连接的&netty的reactor模式和<Netty源码学习5--服务端是如何读取数据的>,我们了 ...

  3. jmeter编写java脚本

    jmeter开发java脚本主要的依赖包有三个如下图 步骤1 :打开idea,创建一个project,导入上图依赖包 步骤2:创建一个类,继承AbstractJavaSamplerClient类,并实 ...

  4. 快速认识什么是:Kubernetes

    每次谈到容器的时候,除了Docker之外,都会说起 Kubernetes,那么什么是 Kubernetes呢?今天就来一起学快速入门一下 Kubernetes 吧!希望本文对您有所帮助. Kubern ...

  5. tensorflow GPU版本配置加速环境

    import tensorflow as tf tf.test.is_gpu_available() 背景 环境:Anaconda .tensorflow_gpu==1.4.0 (这里就用1.4.0版 ...

  6. Google Guava提供的特殊的Table集合

    1.Table 是个啥? 是一个特殊的映射,其中两个键可以在组合的方式被指定为单个值.它类似于创建映射的映射. 当你想使用多个键做索引的时候,你可能会用类似 Map<rowKey, Map< ...

  7. LCIS最长公共上升子序列!HDU-1423

    This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence ...

  8. NetSuite Tips —— 发送邮件未被接收或被退回

    Background: NS 发送的邮件过于频繁被邮箱系统识别为垃圾邮件,被拒收或被拦截 Solution: 添加以下邮箱地址到白名单 system@sent-via.netsuite.com nlm ...

  9. NLP复习之朴素贝叶斯

    朴素贝叶斯分类器和加一平滑计算每个单词的似然值 贝叶斯规则:c表示类别,d表示数据 \[P(c|d) = \frac{P(d|c)P(c)}{P(d)} \] 例题1 假设句子"I alwa ...

  10. 【笔记】01 -- Spring-Cloud介绍

    第一章节我们主要是介绍微服务 springCloud的架构和分布式的区别 但是后面会主要介绍netflix公司与Alibaba公司的两套架构 系统架构 **概述** 随着互联网的发展,网站应用的规模不 ...