Python | BitMap算法及其实现
BitMap概述
本文介绍 BitMap 算法的应用背景,算法思想和相关实现细节。
概括而言,BitMap 主要用来解决海量数据中元素查询,去重、以及排序等问题。这里对海量数据场景的强调,似乎暗示了这个算法对空间的利用相当的精巧和经济,事实确实如此。
BitMap算法
本来数据序列的排序是一个平凡的任务,现有的多种排序算法,都有各自擅场能适应不同情形的具体要求。但我们考虑这样一个场景:有一台内存为 4 GB 的 PC,其硬盘中的一个存储了 30 亿个无符号整型数据文件,这些整数一行一个且无重复。现在需要我们对这个文件中的数据进行排序后输出。
简单计算不难得到,这个数据文件的大小为 \(4⋅3⋅10^9/2^{30}\) 约为 11.2 GB,显然将这个数据文件直接读入内存是办不到的。能否强行利用现有的内存 size 来存储这些数据呢?答案是可能的,此时 BitMap 算法就该 C 位亮相了。BitMap 的想法相当精妙,它对整型数据作了一种转化,使得这个办不到的存储成为可能。我们这里忽略不同语言的设定,假设一个 int 整数占 4 个字节,即32 bit,如果我们能用一个 bit 位来标示一个 int 整数,那么需要的存储空间将大大减少,估算一下可知,30亿个整数需要的内存空间为 \(4⋅3⋅10^9/8/2^{20}\) 大概为 357.6 MB,这样,我们可以轻易将这 30 亿个 int 数放到内存中进行处理。
具体而言,BitMap 对数据的转化可简述如下:
一个整型 int 占 4 bytes,共32位,我们申请一个 int 长度为 N//32 + 1 的数组,即可存储完这些数据,其中 N 表示要进行查找的最大整数,这可以经读取遍历一轮数据获得。通过数组中的每个元素在内存在占 32 位对应表示十进制数 0-31,故可得到 BitMap 表:
array[0] 可表示 0-31
array[1] 可表示 32-63
array[2] 可表示 64-95
...
下面就只剩下如何将十进制数转换为对应的二进制 bit 位,实现以 1 当 32 的效果,显然,这部分实现只需用到一些位运算操作,具体细节见下面的代码示例。不难看出,Bitmap 排序需要的时间复杂度和空间复杂度依赖于数据中最大的数字。
代码实现
from array import array
class BitMap:
def __init__(self):
self.n = 5
self.bitsize = 1 << self.n
self.typecode = 'I' # 32位unsighed整型
self.lowerbound = 0 # 若数组中有负数,则所有数都减去最小的那个负数
@staticmethod
def greater_power2n(x):
i = 1
while True:
y = x >> i
x |= y
if y == 0:
break
i <<= 1
return x + 1
def load(self, inp):
'''
一般情形,数据应该是流式读取,这里简化起见不失一般性,将数据直接全部读完
'''
mini = min(inp)
if mini < 0:
self.lowerbound = -mini # 如果数组中有<0的数,则所有数都要减去最小的那个负数
inp = [i + self.lowerbound for i in inp]
maxi = max(inp)
num_arr = max(self.greater_power2n(maxi) >> self.n, 1) # 至少应该使用一个数组
self.arr = array(self.typecode, [0] * num_arr)
for x in inp:
self._set(x)
def _set(self, x, set_val=True):
'''
将x在数组中对应元置为1
'''
arr_idx = x >> self.n # 元素在第几个数组中,等价于x // 2**self.n
bit_idx = x & (self.bitsize - 1) # 元素在相应数组中的第几个bit位,等价于x % 2**self.n
if set_val:
self.arr[arr_idx] |= 1 << bit_idx
else:
self.arr[arr_idx] &= ~(1 << bit_idx)
def search(self, x):
if self.lowerbound != 0:
x += self.lowerbound
arr_idx = x >> self.n
bit_idx = x & (self.bitsize - 1)
existence = True if self.arr[arr_idx] & (1 << bit_idx) else False
return existence
def sort(self):
sorted_seq = []
for arr_idx, a in enumerate(self.arr):
for bit_idx in range(self.bitsize):
if a & (1 << bit_idx):
sorted_seq.append(arr_idx * self.bitsize + bit_idx - self.lowerbound)
return sorted_seq
def show_bitmap(self):
for i, a in enumerate(self.arr):
print('The {}th array elements: {:032b}'.format(i, a))
运行测试
>>> bitmap = BitMap()
>>> bitmap.load([-3, 2, 56, -34, 40, 21, 99, 25])
>>> bitmap.search(21), bitmap.search(3)
(True, False)
>>> bitmap.sort()
[-34, -3, 2, 21, 25, 40, 56, 99]
参考资料
黑胡同里の猫,详解BitMap算法,https://www.520mwx.com/view/59057
位图算法及其实现,BitMap,https://www.pythonf.cn/read/84436
Python | BitMap算法及其实现的更多相关文章
- BitMap算法及其实现(Python)
BitMap概述 本文介绍 BitMap 算法的应用背景,算法思想和相关实现细节. 概括而言,BitMap 主要用来解决海量数据中元素查询,去重.以及排序等问题.这里对海量数据场景的强调,似乎暗示了这 ...
- BitMap算法知识笔记以及在大数据方向的使用
概述 所谓的BitMap算法就是位图算法,简单说就是用一个bit位来标记某个元素所对应的value,而key即是该元素,由于BitMap使用了bit位来存储数据,因此可以大大节省存储空间,这是很常用的 ...
- Python基础算法综合:加减乘除四则运算方法
#!usr/bin/env python# -*- coding:utf-8 -*-#python的算法加减乘除用符号:+,-,*,/来表示#以下全是python2.x写法,3.x以上请在python ...
- BitMap算法应用:Redis队列滤重优化
工作中有用到Redis滤重队列. 原来的方法如下: 方法一 为了保证操作原子性,使用Redis执行Lua脚本. 在脚本中的逻辑是,如果队列不超过某个数值,进行一次lrem操作(队列使用list结构), ...
- bitmap算法
概述 所谓bitmap就是用一个bit位来标记某个元素对应的value,而key即是这个元素.由于采用bit为单位来存储数据,因此在可以大大的节省存储空间 算法思想 32位机器上,一个整形,比如int ...
- xsank的快餐 » Python simhash算法解决字符串相似问题
xsank的快餐 » Python simhash算法解决字符串相似问题 Python simhash算法解决字符串相似问题
- 经典算法题每日演练——第十一题 Bitmap算法
原文:经典算法题每日演练--第十一题 Bitmap算法 在所有具有性能优化的数据结构中,我想大家使用最多的就是hash表,是的,在具有定位查找上具有O(1)的常量时间,多么的简洁优美, 但是在特定的场 ...
- BitMap 算法
什么是 BigMap 算法 所谓 BitMap 就是用一个 bit 位来标记某个元素对应的 value,而 key 即是这个元素.由于采用bit为单位来存储数据,因此在可以大大的节省存储空间. 算法思 ...
- 【算法与数据结构专场】BitMap算法基本操作代码实现
上篇我们讲了BitMap是如何对数据进行存储的,没看过的可以看一下[算法与数据结构专场]BitMap算法介绍 这篇我们来讲一下BitMap这个数据结构的代码实现. 回顾下数据的存储原理 一个二进制位对 ...
- 浅谈bitmap算法
一.bitmap算法思想 32位机器上,一个整形,比如int a; 在内存中占32bit位,可以用对应的32bit位对应十进制的0-31个数,bitmap算法利用这种思想处理大量数据的排序与查询. ...
随机推荐
- java 405_Http状态405-方法不允许
解决方法: 删除下列代码. super.doGet(req.resp); super.doPost(req.resp); 分析: 405错误一般指请求method not allowed 错误. 请求 ...
- Helm Chart 部署 Redis 的完美指南
目录 一.Helm介绍 二.安装Helm 三.配置Helm的repository 四.部署chart(以部署redis为例) 1. 搜索chart 2. 拉取chart 3. 修改values.yam ...
- 实现 Raft 协议
文章地址 简介 Raft 是一个分布式共识算法,用于保证所有机器对一件事达成一个看法.本文用于记录实现 Raft 选举和日志复制的代码细节. 选举 节点启动时首先是跟随者状态,如果到达选举超时时间就尝 ...
- 支付宝 v3 验签如何实现
上次给大家介绍了 支付宝 v3 自签名如何实现,这次顺便再把验签也写一下. 为什么要验签 说起为什么要验签,如果要详细一点解释的话,可以写很多很多...... 我们就简单一点来解释:验签可以证明接收到 ...
- java断言机制(assert)
java断言机制(assert) 概述 断言使用的时候不是很多,测试时会使用,springboot中也有使用,总的来说断言还是要慎重. 在Java中,同样也有assert关键字,表示断言 在Java中 ...
- Linux应急响应总结——更新中
Linux应急响应 用户信息 方向 查看可登录的用户: cat /etc/passwd | grep /bin/bash awk -F: '{if($7!="/usr/sbin/nologi ...
- C realloc(): invalid next size错误
C realloc(): invalid next size 问题代码 #include <stdio.h> #include <stdlib.h> int *getNumbe ...
- kafka源码阅读之MacBook Pro M1搭建Kafka2.7版本源码运行环境
原创/朱季谦 最近在阅读Kafka的源码,想可以在阅读过程当中,在代码写一些注释,便决定将源码部署到本地运行. 日常开发过程中,用得比较多一个版本是Kafka2.7版本,故而在MacBook Pro笔 ...
- c#5.0/6.0/7.0
发现很多.net 程序员水平一直停留在c#3.0阶段,现在来整理下c#5.0/6.0/7.0新语法新特性. 人生需要不断充电,不断去get新技能而不是固步自封,对于我自己而言,虽不盲目追求新技术,但每 ...
- libGDX游戏开发之NPC敌人事件(六)
libGDX系列,游戏开发有unity3D巴拉巴拉的,为啥还用java开发?因为我是Java程序员emm-国内用libgdx比较少,多数情况需要去官网和google找资料,相互学习的可以加我联系方式. ...