在使用python orm 框架 peewee 操作数据库时时常会抛出以一个异常,具体的报错就是 database is locked

初步了解是因为sqlite锁的颗粒度比较大,是库锁。当一个连接在写数据库时,另一个连接在想要写任意一张表都会报错。

为了解决这个问题,做如下的实验分析问题

理论分析

SQLite 是一个软件库,实现了自给自足的、无服务器的、零配置的、事务性的 SQL 数据库引擎。

SQLite允许多个进程/线程同时进行读操作,但在同一时刻只允许一个线程进行写操作。SQLite在进行写操作时,数据库文件会被锁定,此时任何其他的读/写操作都会被阻塞,如果阻塞超过5秒钟,就会抛出描述为“database is locked”的异常。

出现上述现象的原因是SQLite只支持库级锁,不支持并发执行写操作,即使是不同的表,同一时刻也只能进行一个写操作。

例如,事务T1在表A新插入一条数据,事务T2在表B中更新一条已存在的数据,这两个操作是不能同时进行的,只能顺序进行。

建表

import datetime
from peewee import AutoField, DateTimeField, Model, SqliteDatabase, TextField, IntegerField db = SqliteDatabase('my_app.db', pragmas={'journal_mode': 'wal'}) class BaseModel(Model):
"""A base model that will use our Sqlite database."""
id = AutoField()
update_time = DateTimeField(default=datetime.datetime.now) class Meta:
database = db class User(BaseModel):
name = TextField()
age = IntegerField() class Meta:
table_name = "user" if __name__ == "__main__": db.connect()
db.create_tables([User]) User.create(name="ljk", age=29) res = User.select()
for i in res:
print(i.name, i.age)

串行写操作不会锁库

串行执行不会锁表,同时也说明事务完成之后锁立即释放

import time
import threading
from peewee_demo import User def write_sql(num):
user = User.get_by_id(1)
print(f"传入数值:{num}")
print("睡眠10s, 开始")
time.sleep(10)
print("睡眠10s, 结束")
user.age = num
user.save() write_sql(100)
write_sql(300)
传入数值:100
睡眠10s, 开始
睡眠10s, 结束
传入数值:300
睡眠10s, 开始
睡眠10s, 结束

两个线程同时写会锁表

import time
import random
import threading
from peewee_demo import User def write_sql(index):
users = User.select() for user in users:
user.age = random.randint(100, 200)
print(f"in {index} , now is {time.time()}")
user.save() if __name__ == "__main__": p1 = threading.Thread(target=write_sql, args=(1, ))
p2 = threading.Thread(target=write_sql, args=(2, )) p1.start()
p2.start() p1.join()
p2.join()
(idt_dev) ➜  peewee_sqlite python main.py
in 1 , now is 1691136403.4496074
in 2 , now is 1691136403.4499302
Exception in thread Thread-2:
Traceback (most recent call last):
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 3246, in execute_sql
cursor.execute(sql, params or ())
sqlite3.OperationalError: database is locked During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "/usr/local/lib/python3.8/threading.py", line 932, in _bootstrap_inner
self.run()
File "/usr/local/lib/python3.8/threading.py", line 870, in run
self._target(*self._args, **self._kwargs)
File "main.py", line 13, in write_sql
user.save()
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 6785, in save
rows = self.update(**field_dict).where(self._pk_expr()).execute()
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 1966, in inner
return method(self, database, *args, **kwargs)
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 2037, in execute
return self._execute(database)
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 2555, in _execute
cursor = database.execute(self)
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 3254, in execute
return self.execute_sql(sql, params)
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 3246, in execute_sql
cursor.execute(sql, params or ())
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 3014, in __exit__
reraise(new_type, new_type(exc_value, *exc_args), traceback)
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 192, in reraise
raise value.with_traceback(tb)
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 3246, in execute_sql
cursor.execute(sql, params or ())
peewee.OperationalError: database is locked
in 1 , now is 1691136403.4617224
in 1 , now is 1691136403.467874
in 1 , now is 1691136403.475302
in 1 , now is 1691136403.4822652
in 1 , now is 1691136403.489331
in 1 , now is 1691136403.4965873
in 1 , now is 1691136403.5043068
in 1 , now is 1691136403.5117881
in 1 , now is 1691136403.5194569
in 1 , now is 1691136403.5266187
in 1 , now is 1691136403.5337832
in 1 , now is 1691136403.5410187
in 1 , now is 1691136403.5481625
in 1 , now is 1691136403.555381
in 1 , now is 1691136403.5625844
in 1 , now is 1691136403.569803
in 1 , now is 1691136403.5772254
in 1 , now is 1691136403.5843408
in 1 , now is 1691136403.5914726

同时一个读+一个写不会锁表

import time
import random
import threading
from peewee_demo import User def write_sql(index):
users = User.select() for user in users:
user.age = random.randint(100, 200)
print(f"in write {index} , now is {time.time()}")
user.save() def read_sql(index):
users = User.select()
for user in users:
print(f"in read {index}, now is {time.time()}, name: {user.name}") if __name__ == "__main__": p1 = threading.Thread(target=write_sql, args=(1, ))
p2 = threading.Thread(target=read_sql, args=(2, )) p1.start()
p2.start() p1.join()
p2.join()
in write 1 , now is 1691136578.3930526
in read 2, now is 1691136578.3933816, name: person_P0
in read 2, now is 1691136578.3934226, name: person_P1
in read 2, now is 1691136578.3934548, name: person_P2
in read 2, now is 1691136578.3934836, name: person_P3
in read 2, now is 1691136578.3935122, name: person_P4
in read 2, now is 1691136578.3935406, name: person_P5
in read 2, now is 1691136578.3935676, name: person_P6
in read 2, now is 1691136578.393595, name: person_P7
in read 2, now is 1691136578.3936222, name: person_P8
in read 2, now is 1691136578.3936503, name: person_P9
in read 2, now is 1691136578.3936775, name: person_P10
in read 2, now is 1691136578.393705, name: person_P11
in read 2, now is 1691136578.3937323, name: person_P12
in read 2, now is 1691136578.3937595, name: person_P13
in read 2, now is 1691136578.3937871, name: person_P14
in read 2, now is 1691136578.3938174, name: person_P15
in read 2, now is 1691136578.3938463, name: person_P16
in read 2, now is 1691136578.3938737, name: person_P17
in read 2, now is 1691136578.393901, name: person_P18
in read 2, now is 1691136578.3939342, name: person_P19
in write 1 , now is 1691136578.4051046
in write 1 , now is 1691136578.4108906
in write 1 , now is 1691136578.4169016
in write 1 , now is 1691136578.4225135
in write 1 , now is 1691136578.4282284
in write 1 , now is 1691136578.4340622
in write 1 , now is 1691136578.4397743
in write 1 , now is 1691136578.4456632
in write 1 , now is 1691136578.451795
in write 1 , now is 1691136578.4575145
in write 1 , now is 1691136578.463979
in write 1 , now is 1691136578.471128
in write 1 , now is 1691136578.4781554
in write 1 , now is 1691136578.4851305
in write 1 , now is 1691136578.4925086
in write 1 , now is 1691136578.4996982
in write 1 , now is 1691136578.5068758
in write 1 , now is 1691136578.5138164
in write 1 , now is 1691136578.520577

加锁

加锁和数据库设置:

  • 不管加什么锁,都不能解决lock的问题
  • 是否设置读写模式都不影响读写操作
db = SqliteDatabase('my_app.db', pragmas={'journal_mode': 'wal'})
def write_sql(index):
users = User.select() # with db.atomic("IMMEDIATE"):
with db.atomic("EXCLUSIVE"):
print("user")
for user in users:
try:
user.age = random.randint(100, 200)
time.sleep(1)
print(f"in write {index} , now is {time.time()}")
user.save()
except Exception as e:
print(e) in write 10 , now is 1691142036.4625945
in write 10 , now is 1691142037.464804
in write 10 , now is 1691142038.467277
in write 10 , now is 1691142039.4688525
Exception in thread Thread-2:
Traceback (most recent call last):
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 3246, in execute_sql
cursor.execute(sql, params or ())
sqlite3.OperationalError: database is locked During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "/usr/local/lib/python3.8/threading.py", line 932, in _bootstrap_inner
self.run()
File "/usr/local/lib/python3.8/threading.py", line 870, in run
self._target(*self._args, **self._kwargs)
File "main.py", line 11, in write_sql
in write 10 , now is 1691142040.4720113
with db.atomic("EXCLUSIVE"):
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 4363, in __enter__
return self._helper.__enter__()
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 4398, in __enter__
self._begin()
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 4384, in _begin
self.db.begin(*args, **kwargs)
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 3765, in begin
self.execute_sql(statement)
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 3246, in execute_sql
cursor.execute(sql, params or ())
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 3014, in __exit__
reraise(new_type, new_type(exc_value, *exc_args), traceback)
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 192, in reraise
raise value.with_traceback(tb)
File "/home/ljk/.virtualenvs/idt_dev/lib/python3.8/site-packages/peewee.py", line 3246, in execute_sql
cursor.execute(sql, params or ())
peewee.OperationalError: database is locked
in write 10 , now is 1691142041.4745347
in write 10 , now is 1691142042.4767966
in write 10 , now is 1691142043.4779344
in write 10 , now is 1691142044.4796853
in write 10 , now is 1691142045.482223
in write 10 , now is 1691142046.4840803
in write 10 , now is 1691142047.4864902
in write 10 , now is 1691142048.4888134
in write 10 , now is 1691142049.491353
in write 10 , now is 1691142050.4932055
in write 10 , now is 1691142051.4950705
in write 10 , now is 1691142052.496692
in write 10 , now is 1691142053.4988236
in write 10 , now is 1691142054.500759
in write 10 , now is 1691142055.5022364

解决方案

from gpt3.5

SQLite 是一种嵌入式数据库,它默认情况下不支持多个进程同时写入。然而,有几种方法可以解决这个问题:

  1. 串行化访问:通过确保只有一个进程在任何给定时间写入数据库,可以使用互斥锁或信号量来实现串行化访问。这种方法可以保证数据的一致性,但可能会影响性能。
  2. 读写锁:SQLite 提供了一种读写锁机制,可以允许多个进程同时读取数据库,但只允许一个进程写入。这种方式可以提高并发性能,但需要在应用程序中正确实现读写锁的使用。
  3. 延迟写:可以通过将写操作延迟到合适的时机来避免同时写的问题。例如,可以将写操作缓冲到内存中,然后在合适的时机一起写入数据库。这种方式可以提高性能,但需要考虑数据一致性和恢复的问题。
  4. 使用独立的数据库服务器:如果应用程序需要支持大规模并发写入,可以考虑使用独立的数据库服务器,如MySQL或PostgreSQL。这样可以通过连接池和并发控制机制来实现并发写入。

    选择哪种解决方案取决于应用程序的具体需求和性能要求。需要权衡数据一致性、并发性能和开发复杂性,并根据实际情况选择最适合的方法。

串行化访问

使用全局锁,当进行写操作之前获取锁,写操作完成释放锁。没有获取到锁抛出异常,让页面展示出来

import time
import random
import threading
from base_model import User, db Lock = False def write_sql(index):
time.sleep(random.randint(1, 4))
global Lock
if Lock:
print(f"i am {index}, 数据库被lock,退出执行")
return
else:
print(f"i am {index}, 数据库可以使用")
Lock = True
user = User.get_by_id(10)
user.age = 200
user.save()
Lock = False if __name__ == "__main__": data = []
for i in range(20):
p = threading.Thread(target=write_sql, args=(i, ))
data.append(p) for i in data:
i.start() for i in data:
i.join()
(dev) ➜  peewee_sqlite python main.py
i am 6, 数据库可以使用
i am 4, 数据库可以使用
i am 8, 数据库可以使用
i am 19, 数据库可以使用
i am 16, 数据库可以使用
i am 1, 数据库可以使用
i am 0, 数据库可以使用
i am 10, 数据库可以使用
i am 2, 数据库可以使用
i am 11, 数据库可以使用
i am 7, 数据库可以使用
i am 9, 数据库可以使用
i am 3, 数据库可以使用
i am 17, 数据库可以使用
i am 12, 数据库可以使用
i am 14, 数据库可以使用
i am 5, 数据库可以使用
i am 15, 数据库可以使用
i am 13, 数据库可以使用
i am 18, 数据库被lock,退出执行

总结

sqlite多线程无法同时写的特性并没有解决,只能通过业务层面规避这个问题。具体来说就是在需要写入的地方判断一下是否有其他写入任务,没有则获取全局写入标识,执行写操作;有其他写入任务则返回特定状态码,告诉用户其他业务逻辑正在使用数据库。虽然不优雅,but是当下最优解。

不要问为什么不用mysql,上面有人不让用~

peewee 操作 sqlite 锁表问题分析的更多相关文章

  1. mysql死锁-查询锁表进程-分析锁表原因【转】

    查询锁表进程: 1.查询是否锁表 show OPEN TABLES where In_use > 0;   2.查询进程     show processlist   查询到相对应的进程===然 ...

  2. MySQL Online DDL导致全局锁表案例分析

    MySQL Online DDL导致全局锁表案例分析 我这边遇到了什么问题? 线上给某个表执行新增索引SQL, 然后整个数据CPU打到100%, 连接数暴增到极限, 最后导致所有访问数据库的应用都奔溃 ...

  3. mysql查询更新时的锁表机制分析

    为了给高并发情况下的mysql进行更好的优化,有必要了解一下mysql查询更新时的锁表机制. 一.概述 MySQL有三种锁的级别:页级.表级.行级.MyISAM和MEMORY存储引擎采用的是表级锁(t ...

  4. mysql查询更新时的锁表机制分析(只介绍了MYISAM)

    为了给高并发情况下的mysql进行更好的优化,有必要了解一下mysql查询更新时的锁表机制. 一.概述 MySQL有三种锁的级别:页级.表级.行级.MyISAM和MEMORY存储引擎采用的是表级锁(t ...

  5. mysql死锁-查询锁表进程-分析锁表原因

    查询锁表进程: 1.查询是否锁表 show OPEN TABLES where In_use > 0;   2.查询进程     show processlist   查询到相对应的进程===然 ...

  6. mysql锁表机制分析

    http://blog.csdn.net/u010942020/article/details/51925653

  7. informix 数据库锁表分析和解决方法

    一.前言 在联机事务处理(OLTP)的数据库应用系统中,多用户.多任务的并发性是系统最重要的技术指标之一.为了提高并发性,目前大部分RDBMS都采用加锁技术.然而由于现实环境的复杂性,使用加锁技术又不 ...

  8. Mysql执行Update操作时会锁住表

    update tableA a,(select a.netbar_id,sum(a.reward_amt) reward_amt from tableB a group by a.netbar_id) ...

  9. SQLServer+.net 事务锁表问题

    最近操作Sqlserver遇到一个锁表问题.找了好久才搞明白原因和解决办法. 故障现象: 每次启动事务后,执行了删除或者修改操作以后,再执行查询操作就锁表. 解决过程: 1:最初以为SQLServer ...

  10. Oracle 一次 锁表 处理小记

    同事说测试库上的一张表被锁了. 不能执行DML 操作. 锁表的准确说法应该是阻塞.之前的一遍blog里有说明: 锁 死锁 阻塞Latch 等待 详解 http://blog.csdn.net/tian ...

随机推荐

  1. Java 面试题之 Logback 打印日志是如何获取当前方法名称的?

    在 Java 中,有四种方法可以获取当前正在执行方法体的方法名称,分别是: 使用 Thread.currentThread().getStackTrace() 方法 使用异常对象的 getStackT ...

  2. Ubuntu 20.04 挂载局域网络共享硬盘

    创建挂载目录 mkdir /media/nas 创建认证文件.若无密码可以忽略这一步. sudo vim /root/.examplecredentials 按照以下格式写入用户名密码: userna ...

  3. Ubuntu环境下C++使用onnxruntime和Opencv进行YOLOv8模型部署

    目录 环境配置 系统环境 项目文件路径 文件环境 config.txt CMakeLists.txt type.names 读取config.txt配置文件 修改图片尺寸格式 读取缺陷标志文件 生成缺 ...

  4. Python输入某年某月某日,判断这一天是这一年的第几天?

    while 1: year = int(input('year:\n')) #输入年.月.日 month = int(input('month:\n')) day = int(input('day:\ ...

  5. 不要轻易定义指向std::vector中的元素的指针

    类应该是被封装的,类的用户通过接口使用类提供的功能,而不必关心类的内部如何实现.然而,C++标准库容器 std::vector 的实现渗透到了接口中来.对于以下代码: const int pushNu ...

  6. js 通过id、pid遍历集合获得树结构

    原数据 let adreeJson = [ {id: 1, name: '陕西省', pid: 0}, {id: 2, name: '山西省', pid: 0}, {id: 3, name: '广东省 ...

  7. Codeforces Round 903 (Div. 3)

    Codeforces Round 903 (Div. 3) A. Don't Try to Count 大概题意给你两个字符串a,b.a串可进行的操作为将整个a串复制到之前的a串后面(直接用a+a即可 ...

  8. Excel表格数据可视化的六大常见方式,看看你都会吗?

    当涉及到Excel表格数据的可视化,有许多不同的方式可以展示和呈现数据.以下是六种常见的Excel表格数据可视化方式的详细介绍. 1. 条形图(Bar Chart) 条形图是一种常见的数据可视化图表类 ...

  9. antd Pro组件ProFormList实现自定义action

    antd Pro组件ProFormList实现自定义action ProFormList是ant design pro的结构化数据组件,通常用来实现动态表单. 现在有个需求,除了组件自带的删除和复制, ...

  10. [洛谷P5368] [PKUSC2018] 真实排名

    [PKUSC2018]真实排名 题目描述 小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己) ...