T1 电压机制

解题思路

先找出这个图的一个生成树,然后没有称为树边的边就都是返祖边了。

对于一个边是合法的当且仅当它属于所有的奇数环并且不属于任何一个偶数环。

可以利用树上差分进行修改,更改一个返祖边的两个点的奇偶数环的值。

对于只有一个奇数环的情况,显然那一条返祖边也是一条合法的边。

code

#include<bits/stdc++.h>
#define int long long
#define ull unsigned long long
#define f() cout<<"Failed"<<endl
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
const int N=1e5+10,M=2e5+10;
int n,m,ans,all,odd[N],even[N],fa[N],dep[N];
int tot=1,head[N],nxt[M<<1],ver[M<<1],edge[M<<1];
bool vis[N];
void add_edge(int x,int y)
{
ver[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs(int x)
{
dep[x]=dep[fa[x]]+1; vis[x]=true;
for(int i=head[x];i;i=nxt[i])
{
int to=ver[i];
if(!vis[to]) fa[to]=x,edge[i]=edge[i^1]=true,dfs(to);
}
}
void dfs2(int x)
{
vis[x]=true;
for(int i=head[x];i;i=nxt[i])
if(fa[ver[i]]==x&&!vis[ver[i]])
dfs2(ver[i]),odd[x]+=odd[ver[i]],even[x]+=even[ver[i]];
if(x!=1&&odd[x]==all&&!even[x]) ans++;
}
signed main()
{
freopen("a.in","r",stdin); freopen("a.out","w",stdout);
n=read(); m=read();
for(int i=1,x,y;i<=m;i++)
x=read(),y=read(),
add_edge(x,y),add_edge(y,x);
dfs(1);
for(int i=1;i<=m;i++)
{
int x=ver[i<<1],y=ver[i<<1|1];
if(edge[i<<1]) continue;
if(dep[x]<dep[y]) swap(x,y);
if((dep[x]-dep[y]+1)&1) odd[x]++,odd[y]--,all++;
else even[x]++,even[y]--;
}
memset(vis,false,sizeof(vis)); dfs2(1);
printf("%lld",ans+(all==1));
return 0;
}

T2 括号密码

大坑未补

T3 排列

解题思路

这个题可就真有意思了。。

测试点分治模板题?? 对于每一个排列进行计算。

以排列 1 2 3 4 为例,我们枚举相应比例为 4 的数下标记为 r 所表示的数字是 \(s_r\) 。

然后枚举相应比例为 2 的数下标记为 l 所表示的数字是 \(s_l\) 。

对于 \([1,l-1]\) 以及 \([l+1,r-1]\) 这两个区间某个值域的数字可以用前缀和或者线段树求出来。

于是我们假设下标在 \([1,l-1]\) 权值在 \([1,s_l-1]\) 的数字的个数为 \(sum_1\) 。

假设下标在 \([l+1,r-1]\) 权值在 \([s_l+1,s_r-1]\) 的数字的个数为 \(sum_2\) 。

那么当前的 l 和 r 的贡献就是 \(sum_1\times sum_2\)

但是锁定这两个位置的并不是普遍适用的,因此我们也可以锁定相对位置为 2 , 3 的数查询两边合法的数字。

还有一种特例 2 4 1 3 我们选择枚举相对大小是 3 的数字,从左向右枚举相对大小是 4 的数字(记下标为 \(l\) )

考虑 一个数字 \(x\) 从 \(l\) 的右侧变为 \(l\) 左侧的点的贡献 其实就是在 \([l,r]\) 区间中 值域在 \([1,x-1]\) 相对于 x 产生了贡献。

位置在 \([1,l-1]\) 区间中大于 \(x+1\) 相对于 x 产生的贡献消失了。

于是我们直接 12 分治解决掉这个题。

也许时间稍大一些但是空间绝对最优。。

code

#include<bits/stdc++.h>
#define int long long
#define ull unsigned long long
#define f() cout<<"Failed"<<endl
#define ls x<<1
#define rs x<<1|1
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
const int N=2e3+10;
struct Segment_Tree
{
int tre[N<<2];
void push_up(int x){tre[x]=tre[ls]+tre[rs];}
void build(int x,int l,int r)
{
if(l==r) return tre[x]=0,void();
int mid=(l+r)>>1; tre[x]=0;
build(ls,l,mid); build(rs,mid+1,r);
}
void insert(int x,int l,int r,int pos,int val)
{
if(l==r) return tre[x]+=val,void();
int mid=(l+r)>>1;
if(pos<=mid) insert(ls,l,mid,pos,val);
else insert(rs,mid+1,r,pos,val);
push_up(x);
}
int query(int x,int l,int r,int L,int R)
{
if(L>R) return 0;
if(L<=l&&r<=R) return tre[x];
int mid=(l+r)>>1,sum=0;
if(L<=mid) sum+=query(ls,l,mid,L,R);
if(R>mid) sum+=query(rs,mid+1,r,L,R);
push_up(x); return sum;
}
}T1,T2;
int n,ans,a[10],s[N];
void SPJ()
{
for(int r=4;r<=n;r++)
{
T1.build(1,1,n); T2.build(1,1,n); T1.insert(1,1,n,s[1],1);
for(int l=2;l<=r-1;l++) T2.insert(1,1,n,s[l],1);
for(int l=2;l<=r-2;l++)
{
T2.insert(1,1,n,s[l],-1);
ans+=T1.query(1,1,n,1,s[l]-1)*T2.query(1,1,n,s[l]+1,s[r]-1);
T1.insert(1,1,n,s[l],1);
}
}
}
void SPJ2()
{
for(int r=4;r<=n;r++)
{
T1.build(1,1,n); T2.build(1,1,n); T1.insert(1,1,n,s[1],1);
for(int l=2;l<=r-1;l++) T2.insert(1,1,n,s[l],1);
for(int l=2;l<=r-2;l++)
{
T2.insert(1,1,n,s[l],-1);
ans+=T1.query(1,1,n,s[r]+1,s[l]-1)*T2.query(1,1,n,1,s[r]-1);
T1.insert(1,1,n,s[l],1);
}
}
}
void SPJ3()
{
for(int r=4;r<=n;r++)
{
T1.build(1,1,n); T2.build(1,1,n); T1.insert(1,1,n,s[1],1);
for(int l=2;l<=r-1;l++) T2.insert(1,1,n,s[l],1);
for(int l=2;l<=r-2;l++)
{
T2.insert(1,1,n,s[l],-1);
if(s[l]<=s[r])ans+=T1.query(1,1,n,1,s[l]-1)*T2.query(1,1,n,s[r]+1,n);
T1.insert(1,1,n,s[l],1);
}
}
}
void SPJ4()
{
for(int r=4;r<=n;r++)
{
T1.build(1,1,n); T2.build(1,1,n); T1.insert(1,1,n,s[1],1);
for(int l=2;l<=r-1;l++) T2.insert(1,1,n,s[l],1);
for(int l=2;l<=r-2;l++)
{
T2.insert(1,1,n,s[l],-1);
if(s[r]<= s[l])ans+=T1.query(1,1,n,1,s[r]-1)*T2.query(1,1,n,s[l]+1,n);
T1.insert(1,1,n,s[l],1);
}
}
}
void SPJ5()
{
for(int r=4;r<=n;r++)
{
T1.build(1,1,n); T2.build(1,1,n); T1.insert(1,1,n,s[1],1);
for(int l=2;l<=r-1;l++) T2.insert(1,1,n,s[l],1);
for(int l=2;l<=r-2;l++)
{
T2.insert(1,1,n,s[l],-1);
ans+=T1.query(1,1,n,1,s[r]-1)*T2.query(1,1,n,s[r]+1,s[l]-1);
T1.insert(1,1,n,s[l],1);
}
}
}
void SPJ6()
{
for(int r=4;r<=n;r++)
{
T1.build(1,1,n); T2.build(1,1,n); T1.insert(1,1,n,s[1],1);
for(int l=2;l<=r-1;l++) T2.insert(1,1,n,s[l],1);
for(int l=2;l<=r-2;l++)
{
T2.insert(1,1,n,s[l],-1);
ans+=T1.query(1,1,n,s[l]+1,s[r]-1)*T2.query(1,1,n,1,s[l]-1);
T1.insert(1,1,n,s[l],1);
}
}
}
void SPJ7()
{
for(int r=3;r<n;r++)
{
T1.build(1,1,n); T2.build(1,1,n); T1.insert(1,1,n,s[1],1);
for(int i=r+1;i<=n;i++) T2.insert(1,1,n,s[i],1);
for(int l=2;l<=r-1;l++)
{
if(s[l]>=s[r])ans+=T1.query(1,1,n,1,s[r]-1)*T2.query(1,1,n,s[l]+1,n);
T1.insert(1,1,n,s[l],1);
}
}
}
void SPJ8()
{
for(int r=3;r<n;r++)
{
T1.build(1,1,n); T2.build(1,1,n); T1.insert(1,1,n,s[1],1);
for(int i=r+1;i<=n;i++) T2.insert(1,1,n,s[i],1);
for(int l=2;l<=r-1;l++)
{
if(s[l]>=s[r])ans+=T1.query(1,1,n,1,s[r]-1)*T2.query(1,1,n,s[r]+1,s[l]-1);
T1.insert(1,1,n,s[l],1);
}
}
}
void SPJ9()
{
for(int r=3;r<n;r++)
{
T1.build(1,1,n); T2.build(1,1,n); T1.insert(1,1,n,s[1],1);
for(int i=r+1;i<=n;i++) T2.insert(1,1,n,s[i],1);
for(int l=2;l<=r-1;l++)
{
if(s[l]<=s[r])ans+=T1.query(1,1,n,s[l]+1,s[r]-1)*T2.query(1,1,n,s[r]+1,n);
T1.insert(1,1,n,s[l],1);
}
}
}
void SPJ10()
{
for(int r=3;r<n;r++)
{
T1.build(1,1,n); T2.build(1,1,n); T1.insert(1,1,n,s[1],1);
for(int i=r+1;i<=n;i++) T2.insert(1,1,n,s[i],1);
for(int l=2;l<=r-1;l++)
{
if(s[l]>=s[r])ans+=T1.query(1,1,n,s[r]+1,s[l]-1)*T2.query(1,1,n,s[l]+1,n);
T1.insert(1,1,n,s[l],1);
}
}
}
void SPJ11()
{
for(int r=3;r<n;r++)
{
T1.build(1,1,n); T2.build(1,1,n);
for(int i=r+1;i<=n;i++) T2.insert(1,1,n,s[i],1);
for(int i=1;i<=r-1;i++) T1.insert(1,1,n,s[i],1);
for(int l=1;l<=r-2;l++)
{
T1.insert(1,1,n,s[l],-1);
if(s[l]>s[r]) ans+=T1.query(1,1,n,1,s[r]-1)*T2.query(1,1,n,s[l]+1,n);
}
}
}
void SPJ12()
{
for(int r=4;r<=n;r++)
{
int sum=0; T1.build(1,1,n); T2.build(1,1,n);
for(int i=1;i<=r-1;i++) T2.insert(1,1,n,s[i],1);
for(int l=1;l<=r-2;l++)
if(s[l]>s[r]) ans+=sum;
else
{
sum+=T2.query(1,1,n,1,s[l]-1);
sum-=T1.query(1,1,n,s[l]+1,n);
T1.insert(1,1,n,s[l],1);
T2.insert(1,1,n,s[l],-1);
}
}
}
signed main()
{
freopen("c.in","r",stdin); freopen("c.out","w",stdout);
n=read();
for(int i=1;i<=4;i++) a[i]=read();
for(int i=1;i<=n;i++) s[i]=read();
if(a[1]==1&&a[2]==2&&a[3]==3&&a[4]==4) SPJ();//1 2 3 4
if(a[1]==4&&a[2]==3&&a[3]==2&&a[4]==1) reverse(s+1,s+n+1),SPJ();
if(a[1]==3&&a[2]==4&&a[3]==1&&a[4]==2) SPJ2();//3 4 1 2
if(a[1]==2&&a[2]==1&&a[3]==4&&a[4]==3) reverse(s+1,s+n+1),SPJ2();
if(a[1]==1&&a[2]==2&&a[3]==4&&a[4]==3) SPJ3();//1 2 4 3
if(a[1]==3&&a[2]==4&&a[3]==2&&a[4]==1) reverse(s+1,s+n+1),SPJ3();
if(a[1]==1&&a[2]==3&&a[3]==4&&a[4]==2) SPJ4();//1 3 4 2
if(a[1]==2&&a[2]==4&&a[3]==3&&a[4]==1) reverse(s+1,s+n+1),SPJ4();
if(a[1]==1&&a[2]==4&&a[3]==3&&a[4]==2) SPJ5();//1 4 3 2
if(a[1]==2&&a[2]==3&&a[3]==4&&a[4]==1) reverse(s+1,s+n+1),SPJ5();
if(a[1]==3&&a[2]==2&&a[3]==1&&a[4]==4) SPJ6();//3 2 1 4
if(a[1]==4&&a[2]==1&&a[3]==2&&a[4]==3) reverse(s+1,s+n+1),SPJ6();
if(a[1]==1&&a[2]==3&&a[3]==2&&a[4]==4) SPJ7();//1 3 2 4
if(a[1]==4&&a[2]==2&&a[3]==3&&a[4]==1) reverse(s+1,s+n+1),SPJ7();
if(a[1]==1&&a[2]==4&&a[3]==2&&a[4]==3) SPJ8();//1 4 2 3
if(a[1]==3&&a[2]==2&&a[3]==4&&a[4]==1) reverse(s+1,s+n+1),SPJ8();
if(a[1]==2&&a[2]==1&&a[3]==3&&a[4]==4) SPJ9();//2 1 3 4
if(a[1]==4&&a[2]==3&&a[3]==1&&a[4]==2) reverse(s+1,s+n+1),SPJ9();
if(a[1]==2&&a[2]==3&&a[3]==1&&a[4]==4) SPJ10();//2 3 1 4
if(a[1]==4&&a[2]==1&&a[3]==3&&a[4]==2) reverse(s+1,s+n+1),SPJ10();
if(a[1]==3&&a[2]==1&&a[3]==2&&a[4]==4) SPJ11();//3 1 2 4
if(a[1]==4&&a[2]==2&&a[3]==1&&a[4]==3) reverse(s+1,s+n+1),SPJ11();
if(a[1]==2&&a[2]==4&&a[3]==1&&a[4]==3) SPJ12();//2 4 1 3
if(a[1]==3&&a[2]==1&&a[3]==4&&a[4]==2) reverse(s+1,s+n+1),SPJ12();
printf("%lld",ans); return 0;
}

T4 B关系

大坑未补

NOIP模拟63的更多相关文章

  1. Noip模拟63 2021.9.27(考场惊现无限之环)

    T1 电压机制 把题目转化为找那些边只被奇数环包含. 这样的话直接$dfs$生成一棵树,给每个点附上一个深度,根据其他的非树边都是返祖边 可以算出环内边的数量$dep[x]-dep[y]+1$,然后判 ...

  2. NOIP模拟17.9.22

    NOIP模拟17.9.22 前进![问题描述]数轴的原点上有一只青蛙.青蛙要跳到数轴上≥

  3. NOIP 模拟4 T2

    本题属于二和一问题 子问题相互对称 考虑对于问题一:知a求b 那么根据b数组定义式 显然能发现问题在于如何求dis(最短路) 有很多算法可供选择 dijsktra,floyed,bfs/dfs,spf ...

  4. 2021.9.17考试总结[NOIP模拟55]

    有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a ...

  5. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  6. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

  7. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  8. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

  9. 队爷的讲学计划 CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的讲学计划 题解:刚开始理解题意理解了好半天,然后发 ...

  10. 队爷的Au Plan CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的Au%20Plan 题解:看了题之后觉得肯定是DP ...

随机推荐

  1. keystore 生成密钥

    前言 在安卓中,我们需要生存keystore来处理我们的证书: 我们很幸运在keystore中,在java中的bin下,已经有了keytool工具了,感谢java社区工作者. 正文 在命令窗口中使用k ...

  2. 利用PyTorch训练模型识别数字+英文图片验证码

    利用PyTorch训练模型识别数字+英文图片验证码 摘要:使用深度学习框架PyTorch来训练模型去识别4-6位数字+字母混合图片验证码(我们可以使用第三方库captcha生成这种图片验证码或者自己收 ...

  3. 力扣585(MySQL)-2016年的投资(中等)

    题目: 写一个查询语句,将 2016 年 (TIV_2016) 所有成功投资的金额加起来,保留 2 位小数. 对于一个投保人,他在 2016 年成功投资的条件是: 他在 2015 年的投保额 (TIV ...

  4. 力扣697(java)-数组的度(简单)

    题目: 给定一个非空且只包含非负数的整数数组 nums,数组的 度 的定义是指数组里任一元素出现频数的最大值. 你的任务是在 nums 中找到与 nums 拥有相同大小的度的最短连续子数组,返回其长度 ...

  5. 力扣670(java)-最大交换(中等)

    题目: 给定一个非负整数,你至多可以交换一次数字中的任意两位.返回你能得到的最大值. 示例 1 : 输入: 2736输出: 7236解释: 交换数字2和数字7.示例 2 : 输入: 9973输出: 9 ...

  6. 聊聊 Linux iowait

    哈喽大家好,我是咸鱼. 我们在使用 top 命令来查看 Linux 系统整体 CPU 使用情况的时候,往往看的是下面这一列: %Cpu(s): 0.0 us, 0.0 sy, 0.0 ni,100.0 ...

  7. 进一步释放技术红利,阿里云推出全新内存增强型实例re6,性能提升30%

    5月7日,国内最大云计算厂商阿里云宣布推出全新一代内存增强型实例,提供1:14.8超大内存比内存容量,满足内存型数据库如SAP HANA.Redis等应用,充分释放技术红利,帮助线下企业快速上云,完成 ...

  8. 一个好的科技公司logo长这样!

    ​简介:一个好的科技logo能体现出行业独有的专业性和技术优势,让你的公司科技感加满! 近年来,越来越多的初创公司崭露头角,其中科技互联网公司的比重非常高.小云也收到很多朋友的留言,询问科技类公司应该 ...

  9. Dubbo3.0|阿里巴巴服务框架三位一体的选择与实践

    ​简介: 服务框架就像铁路的铁轨一样,是互通的基础,只有解决了服务框架的互通,才有可能完成更高层的业务互通,所以用相同的标准统一,合二为一并共建新一代的服务框架是必然趋势.Dubbo3.0 是 Dub ...

  10. [FAQ] 适用于 macOS / Arm64 (M1/M2) 的 VisualBox

      使用与 Windows.Linux.macOS 的x86架构的一般在下面地址中下载: Download VisualBox:https://www.virtualbox.org/wiki/Down ...