#矩阵乘法#洛谷 5343 【XR-1】分块
分析
考虑dp,\(dp[i]=\sum dp[i-j]\)
既然\(j\)很小,那么这显然可以用矩阵乘法优化
代码
#include <cstdio>
#include <cctype>
#include <bitset>
#include <cstring>
#define rr register
using namespace std;
const int N=101,mod=1000000007;
bitset<N>cnt1,cnt2; long long n;
struct maix{int p[N][N];}ANS,A;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
inline maix mul(maix A,maix B){
rr maix C;
memset(C.p,0,sizeof(C.p));
for (rr int i=1;i<N;++i)
for (rr int j=1;j<N;++j)
for (rr int k=1;k<N;++k)
Mo(C.p[i][j],1ll*A.p[i][k]*B.p[k][j]%mod);
return C;
}
signed main(){
scanf("%lld",&n),ANS.p[1][0]=1;
for (rr int T=iut();T;--T) cnt1[iut()]=1;
for (rr int T=iut();T;--T) cnt2[iut()]=1; cnt1&=cnt2;
for (rr int i=1;i<N;++i)
if (cnt1[i]) A.p[N-i][N-1]=1;
for (rr int i=2;i<N;++i) A.p[i][i-1]=1;
for (rr int i=1;i<N;++i)
for (rr int j=0;j<i;++j) if (cnt1[i-j])
Mo(ANS.p[1][i],ANS.p[1][j]);
if (n<N) return !printf("%d",ANS.p[1][n]);
for (n-=N-1;n;n>>=1,A=mul(A,A))
if (n&1) ANS=mul(ANS,A);
return !printf("%d",ANS.p[1][N-1]);
}
#矩阵乘法#洛谷 5343 【XR-1】分块的更多相关文章
- 洛谷P4198 楼房重建 (分块)
洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...
- 洛谷P4135 作诗 (分块)
洛谷P4135 作诗 题目描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章 ...
- 洛谷P3247 [HNOI2016]最小公倍数 [分块,并查集]
洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又 ...
- 洛谷P3247 [HNOI2016]最小公倍数(分块 带撤销加权并查集)
题意 题目链接 给出一张带权无向图,每次询问\((u, v)\)之间是否存在一条路径满足\(max(a) = A, max(b) = B\) Sol 这题居然是分块..想不到想不到..做这题的心路历程 ...
- 洛谷P3247 最小公倍数 [HNOI2016] 分块+并查集
正解:分块+并查集 解题报告: 传送门! 真的好神仙昂QAQ,,,完全想不出来,,,还是太菜了QAQ 首先还是要说下,这题可以用K-D Tree乱搞过去(数据结构是个好东西昂,,,要多学学QAQ),但 ...
- 洛谷P4168 蒲公英 [Violet] 分块
题解:分块+离散化 解题报告: 一个分块典型题呢qwq还是挺妙的毕竟是道黑题 然,然后发现忘记放链接了先放链接QAQ 有两三种解法,都港下qwq 第一个是O(n5/3)的复杂度,谢总说不够优秀没有港, ...
- 洛谷 - P3935 - Calculating - 整除分块
https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...
- 洛谷P3935 Calculation [数论分块]
题目传送门 格式难调,题面就不放了. 分析: 实际上这个就是这道题的升级版,没什么可讲的,数论分块搞就是了. Code: //It is made by HolseLee on 18th Jul 20 ...
- [洛谷P1527] [国家集训队]矩阵乘法
洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入 ...
- 【bzoj3240 && 洛谷P1397】矩阵游戏[NOI2013](矩阵乘法+卡常)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3240 这道题其实有普通快速幂+费马小定理的解法……然而我太弱了,一开始只想到了矩阵乘法的 ...
随机推荐
- Notepad++找回自动保存缓存内容的文件
在目录C:\Users\Administrator\AppData\Roaming\Notepad++\backup中找到自动保存的缓存文件. 参考Notepad++找回自动保存缓存内容的文件
- Python2升级到Python3
操作系统环境:CentOS Linux release 7.4.1708 (Core). 系统默认Python版本为2.7. 升级前的版本信息: [root@cch-spider-web1 ~]# l ...
- geacon_pro配合catcs4.5上线Mac、Linux
最新最全文章见我个人博客: xzajyjs.cn 一些链接 Try师傅的catcs4.5项目: https://github.com/TryGOTry/CobaltStrike_Cat_4.5,最新版 ...
- jvm调优监控工具jps、jstack、jmap、jhat、jstat使用详解
目录 前言 jps(Java Virtual Machine Process Status Tool) jstack jmap(Memory Map)和jhat(Java Heap Analysis ...
- EFCore之命令行工具
介绍 EFCore工具可帮助完成设计数据库时候的开发任务,主要用于通过对数据库架构进行反向工程来管理迁移和搭建DbContext和实体类型.EFCore .NET命令行工具是对跨平台.NET Core ...
- 机器学习从入门到放弃:卷积神经网络CNN(二)
一.前言 通过上一篇文章,我们大概了解了卷积是什么,并且分析了为什么卷积能在图像识别上起到巨大的作用.接下来,废话不多话,我们自己尝试动手搭建一个简易的CNN网络. 二.准备工作 在开始的时候,我们首 ...
- [VueJsDev] 日志 - BBTime-LOG
[VueJsDev] 目录列表 https://www.cnblogs.com/pengchenggang/p/17037320.html BBTime-LOG ::: details 目录 目录 B ...
- day01-SpringBoot基本介绍
SpringBoot基本介绍 1.SpringBoot是什么? 官网地址:https://spring.io/projects/spring-boot 学习文档:https://docs.spring ...
- .NET开源快速、强大、免费的电子表格组件
前言 今天大姚给大家分享一个.NET开源(MIT License).快速.强大.免费的电子表格组件,支持数据格式.冻结.大纲.公式计算.图表.脚本执行等.兼容 Excel 2007 (.xlsx) 格 ...
- docker如何以root身份登录
有时候我们需要进入docker容器时以root身份进入,这边汇总了两种方式如下 第一种 docker exec -it --user=root container_id /bin/bash 第二种 d ...