#矩阵乘法#洛谷 5343 【XR-1】分块
分析
考虑dp,\(dp[i]=\sum dp[i-j]\)
既然\(j\)很小,那么这显然可以用矩阵乘法优化
代码
#include <cstdio>
#include <cctype>
#include <bitset>
#include <cstring>
#define rr register
using namespace std;
const int N=101,mod=1000000007;
bitset<N>cnt1,cnt2; long long n;
struct maix{int p[N][N];}ANS,A;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
inline maix mul(maix A,maix B){
rr maix C;
memset(C.p,0,sizeof(C.p));
for (rr int i=1;i<N;++i)
for (rr int j=1;j<N;++j)
for (rr int k=1;k<N;++k)
Mo(C.p[i][j],1ll*A.p[i][k]*B.p[k][j]%mod);
return C;
}
signed main(){
scanf("%lld",&n),ANS.p[1][0]=1;
for (rr int T=iut();T;--T) cnt1[iut()]=1;
for (rr int T=iut();T;--T) cnt2[iut()]=1; cnt1&=cnt2;
for (rr int i=1;i<N;++i)
if (cnt1[i]) A.p[N-i][N-1]=1;
for (rr int i=2;i<N;++i) A.p[i][i-1]=1;
for (rr int i=1;i<N;++i)
for (rr int j=0;j<i;++j) if (cnt1[i-j])
Mo(ANS.p[1][i],ANS.p[1][j]);
if (n<N) return !printf("%d",ANS.p[1][n]);
for (n-=N-1;n;n>>=1,A=mul(A,A))
if (n&1) ANS=mul(ANS,A);
return !printf("%d",ANS.p[1][N-1]);
}
#矩阵乘法#洛谷 5343 【XR-1】分块的更多相关文章
- 洛谷P4198 楼房重建 (分块)
洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...
- 洛谷P4135 作诗 (分块)
洛谷P4135 作诗 题目描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章 ...
- 洛谷P3247 [HNOI2016]最小公倍数 [分块,并查集]
洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又 ...
- 洛谷P3247 [HNOI2016]最小公倍数(分块 带撤销加权并查集)
题意 题目链接 给出一张带权无向图,每次询问\((u, v)\)之间是否存在一条路径满足\(max(a) = A, max(b) = B\) Sol 这题居然是分块..想不到想不到..做这题的心路历程 ...
- 洛谷P3247 最小公倍数 [HNOI2016] 分块+并查集
正解:分块+并查集 解题报告: 传送门! 真的好神仙昂QAQ,,,完全想不出来,,,还是太菜了QAQ 首先还是要说下,这题可以用K-D Tree乱搞过去(数据结构是个好东西昂,,,要多学学QAQ),但 ...
- 洛谷P4168 蒲公英 [Violet] 分块
题解:分块+离散化 解题报告: 一个分块典型题呢qwq还是挺妙的毕竟是道黑题 然,然后发现忘记放链接了先放链接QAQ 有两三种解法,都港下qwq 第一个是O(n5/3)的复杂度,谢总说不够优秀没有港, ...
- 洛谷 - P3935 - Calculating - 整除分块
https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...
- 洛谷P3935 Calculation [数论分块]
题目传送门 格式难调,题面就不放了. 分析: 实际上这个就是这道题的升级版,没什么可讲的,数论分块搞就是了. Code: //It is made by HolseLee on 18th Jul 20 ...
- [洛谷P1527] [国家集训队]矩阵乘法
洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入 ...
- 【bzoj3240 && 洛谷P1397】矩阵游戏[NOI2013](矩阵乘法+卡常)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3240 这道题其实有普通快速幂+费马小定理的解法……然而我太弱了,一开始只想到了矩阵乘法的 ...
随机推荐
- locals和globals,函数的嵌套,nonlocal,闭包函数及特点以及匿名函数---day11
1.locals和globals 1.1locals 获取当前作用域中的所有内容 locals 如果在函数外,调用locals(),获取打印的是打印之前的所有变量,返回字典,全局空间作用域 loca ...
- go语言中的数据类型
数据类型可分为四类 基础类型 数字.字符串和布尔型 复合类型 数组.结构体 引用类型 指针.切片.map.函数.通道channel 接口类型 interface
- 《Similarity-based Memory Enhanced Joint Entity and Relation Extraction》论文阅读笔记
代码 原文 摘要 文档级联合实体和关系抽取是一项难度很大的信息抽取任务,它要求用一个神经网络同时完成四个子任务,分别是:提及检测.共指消解.实体分类和关系抽取.目前的方法大多采用顺序的多任务学习方式, ...
- DataGear数据可视化分析平台介绍
DataGear 是一款开源免费的数据可视化分析平台,自由制作任何您想要的数据看板,支持接入SQL.CSV.Excel.HTTP接口.JSON等多种数据源. 系统特点: 友好的数据源接入 支持运行时接 ...
- 关于KMP模式匹配的一些思考
算法简介 模式匹配 给定主串text和模式串pattern,在主串中查找,如果找到了模式串,返回模式串在主串中的起始位置,从1开始计数. 暴力求解求解模式匹配 算法的核心思想是:蛮力法.即使用两个指针 ...
- Java 泛型举例
1 package com.bytezero.genericity; 2 3 import org.junit.Test; 4 5 import java.util.*; 6 7 /** 8 * @a ...
- Asp .Net Core 系列:Asp .Net Core 集成 Newtonsoft.Json
简介 Newtonsoft.Json是一个在.NET环境下开源的JSON格式序列化和反序列化的类库.它可以将.NET对象转换为JSON格式的字符串,也可以将JSON格式的字符串转换为.NET对象.这个 ...
- Codeforces Round 113 (Div. 2)E. Tetrahedron(dp、递推)
目录 题面 链接 题意 题解 代码 总结 题面 链接 E. Tetrahedron 题意 从一个顶点出发走过路径长度为n回到出发点的方案总数 题解 考虑dp \(f[i][0|1|2|3]\):走了i ...
- MySQL面经总结
MySQL日志 MySQL日志系统 MySQL查询 菜鸟教程SQL内连接 exist和in区别 sql语句优化 MySQL索引 覆盖索引 索引类型:主键索引,二级索引(辅助索引):唯一索引,普通索引, ...
- STM32 LwIP学习过程问题总结(一):LwIP ping不通,抓包发现ICMP校验和为0x0000
一.问题 今天在将之前的STM32 LwIP1.4.1版本程序移植到2.1.2版本上时,发现ping不同,但是开发板有ICMP回复包,黄颜色警告checksum为0x0000.说明LwIP移植应该是没 ...