单步调试:

(gdb) bt
#1 0x0000000000401347 in strings_not_equal ()
#2 0x0000000000400eee in phase_1 ()
#3 0x0000000000400e3f in main (argc=<optimized out>, argv=<optimized out>) at bomb.c:74

这里的执行流程为:

    /* Hmm...  Six phases must be more secure than one phase! */
input = read_line(); /* Get input */
phase_1(input); /* Run the phase */
phase_defused(); /* Drat! They figured it out!
* Let me know how they did it. */
printf("Phase 1 defused. How about the next one?\n");

可以发现只有phase_1正常返回的时候,才会执行下面的phase_defused()函数将阶段1的炸弹拆除。现在就想让phase_1正常执行完,那就需要让此函数中所有不正常的跳转都不执行。

首先查看phase_1函数的汇编代码:

(gdb) disassemble phase_1
Dump of assembler code for function phase_1:
0x0000000000400ee0 <+0>: sub $0x8,%rsp
0x0000000000400ee4 <+4>: mov $0x402400,%esi #0x402400 --> %esi
0x0000000000400ee9 <+9>: call 0x401338 <strings_not_equal> #调用strings_not_equal函数
0x0000000000400eee <+14>: test %eax,%eax
0x0000000000400ef0 <+16>: je 0x400ef7 <phase_1+23> #如果%eax值为0,则正常返回
0x0000000000400ef2 <+18>: call 0x40143a <explode_bomb> #如果%eax值不为0,则触发炸弹
0x0000000000400ef7 <+23>: add $0x8,%rsp
0x0000000000400efb <+27>: ret

test 指令将 %eax 寄存器的值与自身进行逻辑与操作,并设置标志位,但不修改 %eax 的值。如果 %eax 的值为零,则标志位会被置为零;如果 %eax 的值不为零,则标志位会被置为非零。

如果想让程序正常执行,那么就需要让获得%esi寄存器值的函数strings_not_equal返回值为0。

下面查看函数strings_not_equal的代码,并且分析下主要的控制代码,看看如何让返回值为0:

(gdb) disassemble strings_not_equal
Dump of assembler code for function strings_not_equal:
0x0000000000401338 <+0>: push %r12
0x000000000040133a <+2>: push %rbp
0x000000000040133b <+3>: push %rbx
0x000000000040133c <+4>: mov %rdi,%rbx
0x000000000040133f <+7>: mov %rsi,%rbp
0x0000000000401342 <+10>: call 0x40131b <string_length> # 将%rbx和 %rbp传入函数string_length
0x0000000000401347 <+15>: mov %eax,%r12d # 第一次返回值%eax赋给 %r12d
0x000000000040134a <+18>: mov %rbp,%rdi # %rbp —> %rdi
0x000000000040134d <+21>: call 0x40131b <string_length> # %rdi的值作为入参
0x0000000000401352 <+26>: mov $0x1,%edx
0x0000000000401357 <+31>: cmp %eax,%r12d # 对比两次函数长度调用的结果
0x000000000040135a <+34>: jne 0x40139b <strings_not_equal+99> # 若长度不同,返回1 # 以上代码均为判断两个字符串的长度是否相同,现在的%r12d、%eax分别保存了第一次和第二次的函数调用结果,即两个字符串的长度
# 寄存器rbx 和 rbp 分别保存着函数的两个参数 # 35c-41:若函数第一个参数低8位为0,则返回0
0x000000000040135c <+36>: movzbl (%rbx),%eax # 参数1的低1位字节赋值给eax
0x000000000040135f <+39>: test %al,%al # %al & %al
0x0000000000401361 <+41>: je 0x401388 <strings_not_equal+80> # Jump condition:ZF---(Equal / zero)
# 35c-37f:对比参数1和参数2的每个字节,均相同的话遍
0x0000000000401363 <+43>: cmp 0x0(%rbp),%al # 参数2的低1位字节与数1的低1位字节对比
0x0000000000401366 <+46>: je 0x401372 <strings_not_equal+58> # 如果相等,则对比更高1位的字节
0x0000000000401368 <+48>: jmp 0x40138f <strings_not_equal+87> # 不相等,返回错误1
0x000000000040136a <+50>: cmp 0x0(%rbp),%al
0x000000000040136d <+53>: nopl (%rax)
0x0000000000401370 <+56>: jne 0x401396 <strings_not_equal+94> #若参数1、2的第2个字节不同,则返回错误1
0x0000000000401372 <+58>: add $0x1,%rbx
0x0000000000401376 <+62>: add $0x1,%rbp
0x000000000040137a <+66>: movzbl (%rbx),%eax
0x000000000040137d <+69>: test %al,%al
0x000000000040137f <+71>: jne 0x40136a <strings_not_equal+50> 0x0000000000401381 <+73>: mov $0x0,%edx
0x0000000000401386 <+78>: jmp 0x40139b <strings_not_equal+99>
0x0000000000401388 <+80>: mov $0x0,%edx
0x000000000040138d <+85>: jmp 0x40139b <strings_not_equal+99>
0x000000000040138f <+87>: mov $0x1,%edx
0x0000000000401394 <+92>: jmp 0x40139b <strings_not_equal+99>
0x0000000000401396 <+94>: mov $0x1,%edx
0x000000000040139b <+99>: mov %edx,%eax
0x000000000040139d <+101>: pop %rbx
0x000000000040139e <+102>: pop %rbp
0x000000000040139f <+103>: pop %r12
0x00000000004013a1 <+105>: ret
End of assembler dump.

这里的几个比较重要的跳转代码:

0x40139b <strings_not_equal+99>:函数将以%edx作为返回值返回。

0x401388 <strings_not_equal+80>:返回0。

0x40136a <strings_not_equal+50>:比较 %al 寄存器中的值与 %rbp 寄存器偏移 0 的内存地址处的值,如果不相等,则跳转到地址 0x401396 处执行相应的代码(函数会返回1),否则继续执行后续指令。

重点理解的指令有:

  • test S1, S2:相当于S1&S2,若结果为0,则设置ZF为1
  • jmp的所有指令。重点有je,jump condition为ZF = 1
  • movzbl:0拓展数据。Move zero-extended byte to double word(movz S,R: R ← ZeroExtend(S))

综上,可以得知如果想拆除阶段1的炸弹,则需要输入合理的字符串,而这个字符串可以通过以下分析得出:

  1. 查看phase_1函数的汇编代码,发现入参%rdi需要跟另一个参数0x402400 --> %rsi进入函数strings_not_equal 进行计算,若结果为0,则可以拆除炸弹,否则爆炸。
  2. 查看strings_not_equal 函数的汇编代码,可以分析出此函数是将入参寄存器(%rdi%rsi)所指地址处的字符串进行比对,如果长度相同并且每个字都相同(按照字节对比),则返回0

通过上面两个函数的分析,就可以得知我们所输入的字符串,需要跟地址为0x402400处的字符串进行比对,比对成功则炸弹拆除。

那这样,通过gdb的命令x/30s 0x402400,以 ASCII 格式打印出从地址 0x402400 开始的 10 个字节的数据(假设这些数据是以 0 结尾的字符串),并且找出第一个字符串即可,这里打印的值为:

(gdb) x/30s 0x402400
0x402400: "Border relations with Canada have never been better."
#translation:边境与加拿大的关系从未如此良好。

boom lab分析的更多相关文章

  1. XML第一次简单入门(Lab分析)

    In this tutorial you will create a well-formed and verified XML file. Consider the XML document belo ...

  2. Visual Lab Online —— 事后分析

    项目 内容 班级:北航2020春软件工程 博客园班级博客 作业:事后分析 事后分析 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件使得编写简 ...

  3. CSAPP buffer lab记录——IA32版本

    CSAPP buffer lab为深入理解计算机系统(原书第二版)的配套的缓冲区溢出实验,该实验要求利用缓冲区溢出的原理解决5个难度递增的问题,分别为smoke(level 0).fizz(level ...

  4. 超像素经典算法SLIC的代码的深度优化和分析。

    现在这个社会发展的太快,到处都充斥着各种各样的资源,各种开源的平台,如github,codeproject,pudn等等,加上一些大型的官方的开源软件,基本上能找到各个类型的代码.很多初创业的老板可能 ...

  5. MIT 6.828 JOS学习笔记17. Lab 3.1 Part A User Environments

    Introduction 在这个实验中,我们将实现操作系统的一些基本功能,来实现用户环境下的进程的正常运行.你将会加强JOS内核的功能,为它增添一些重要的数据结构,用来记录用户进程环境的一些信息:创建 ...

  6. MIT 6.828 JOS学习笔记15. Lab 2.1

    Lab 2: Memory Management lab2中多出来的几个文件: inc/memlayout.h kern/pmap.c kern/pmap.h kern/kclock.h kern/k ...

  7. MIT 6.828 JOS学习笔记10. Lab 1 Part 3: The kernel

    Lab 1 Part 3: The kernel 现在我们将开始具体讨论一下JOS内核了.就像boot loader一样,内核开始的时候也是一些汇编语句,用于设置一些东西,来保证C语言的程序能够正确的 ...

  8. MIT 6.828 JOS学习笔记7. Lab 1 Part 2.2: The Boot Loader

    Lab 1 Part 2 The Boot Loader Loading the Kernel 我们现在可以进一步的讨论一下boot loader中的C语言的部分,即boot/main.c.但是在我们 ...

  9. Tomcat源码分析

    前言: 本文是我阅读了TOMCAT源码后的一些心得. 主要是讲解TOMCAT的系统框架, 以及启动流程.若有错漏之处,敬请批评指教! 建议: 毕竟TOMCAT的框架还是比较复杂的, 单是从文字上理解, ...

  10. GJM : 【技术干货】给The Lab Renderer for Unity中地形添加阴影

    感谢您的阅读.喜欢的.有用的就请大哥大嫂们高抬贵手"推荐一下"吧!你的精神支持是博主强大的写作动力以及转载收藏动力.欢迎转载! 版权声明:本文原创发表于 [请点击连接前往] ,未经 ...

随机推荐

  1. 记录--Vue中如何导出excel表格

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 一.导出静态数据 1.安装 vue-json-excel npm i vue-json-excel 注意,此插件对node有版本要求,安装 ...

  2. springboot3接入nacos

    参考:https://blog.csdn.net/qinguan111/article/details/132877842(连接不上nacos) https://verytoolz.com/yaml- ...

  3. C++原子操作与内存序 1

    问题 #include<iostream> #include<thread> int main() { int sum = 0; auto f = [&sum]() { ...

  4. #扫描线,并查集,切比雪夫距离#洛谷 5193 [TJOI2012]炸弹

    题目 在平面上有 \(n\) 个炸弹 \([1 \ldots n]\) , 每个炸弹的爆炸范围是 \(|x-x_i|+|y-yi| \leq R\) 如果某个炸弹爆炸了,那么它将引燃它范围内的所有炸弹 ...

  5. IT的贵与慢

    本文于2019年7月24日完成,发布在个人博客网站上. 考虑个人博客因某种原因无法修复,于是在博客园安家,之前发布的文章逐步搬迁过来. 笔记而已,没有逻辑. 贵与慢,一方面是事实,另一方面是偏见. 流 ...

  6. hive窗口分析函数使用详解系列一

    1.综述 Hive的聚合函数衍生的窗口函数在我们进行数据处理和数据分析过程中起到了很大的作用 在Hive中,窗口函数允许你在结果集的行上进行计算,这些计算不会影响你查询的结果集的行数. Hive提供的 ...

  7. 5 个编写高效 Makefile 文件的最佳实践

    在软件开发过程中,Makefile是一个非常重要的工具,它可以帮助我们自动化构建.编译.测试和部署.然而,编写高效的Makefile文件并不是一件容易的事情.在本文中,我们将讨论如何编写高效的Make ...

  8. 解析 Go 编程语言数据类型:bool、整数、浮点数和字符串详细介绍

    数据类型 数据类型是编程中的重要概念.数据类型指定了变量值的大小和类型.Go是静态类型的,这意味着一旦变量类型被定义,它只能存储该类型的数据. 基本数据类型 Go 有三种基本数据类型: bool:表示 ...

  9. Agent内存马分析

    什么是Java Agent 我们知道Java是一种强类型语言,在运行之前必须将其编译成.class字节码,然后再交给JVM处理运行.Java Agent就是一种能在不影响正常编译的前提下,修改Java ...

  10. Qt将程序最小角化到系统托盘

    #include "test.h" #include "QPushButton" #include <QSystemTrayIcon> Test:: ...