cf479E Riding in a Lift
Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.
Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.
Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).
The first line of the input contains four space-separated integers n, a, b, k (2 ≤ n ≤ 5000, 1 ≤ k ≤ 5000, 1 ≤ a, b ≤ n, a ≠ b).
Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).
5 2 4 1
2
5 2 4 2
2
5 3 4 1
0
Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.
Notes to the samples:
- In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
- In the second sample there are two possible sequences: (1, 2); (1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
- In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.
唉卡在B题1个小时……最后发现C是sb题10分钟秒了
dp:f[i][j]表示走i步到j的方案数
f[i][j]=Σf[i-1][k] | k能到j
n^2k的时间效率会T,但是发现所有的k是一个连续的区间,所以我们可以用前缀和存所有f[i-1][k]的状态,然后O(1)递推
还可以更快
注意到b把1到n的区间分成两半,而且从a开始走一定只能到达a所在的一半,所以可以再优化。期望能缩掉一半复杂度
(其实我是因为2500w状态+取模很虚所以想出这不靠谱的优化)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define pi 3.1415926535897932384626433832795028841971
#define mod 1000000007
using namespace std;
int n,a,b,k,L,R;
LL f[][];
LL sum[],tot;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int main()
{
n=read();a=read();b=read();k=read();
if (a<b)
{
L=;R=b-;
}else
{
L=b+;R=n;
}
f[][a]=;
for (int i=a;i<=n;i++)sum[i]=;
for (int i=;i<=k;i++)
{
for (int j=L;j<=R;j++)
{
int des=(b+j)>>;
if (j<b)
{
while(b-des<=des-j) des--;
while(b-(des+)>(des+)-j) des++;
f[i][j]=(sum[des]-f[i-][j]+mod)%mod;
}else
{
while (des-b<=j-des) des++;
while ((des-)-b>j-(des-)) des--;
f[i][j]=(sum[n]-sum[des-]-f[i-][j]+mod)%mod;
}
}
sum[]=;
for (int ll=;ll<=n;ll++)
sum[ll]=sum[ll-]+f[i][ll];
}
for (int i=L;i<=R;i++)
tot+=f[k][i];
printf("%lld\n",tot%mod);
}
cf479E
cf479E Riding in a Lift的更多相关文章
- codeforces 480C C. Riding in a Lift(dp)
题目链接: C. Riding in a Lift time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #274 (Div. 1) C. Riding in a Lift 前缀和优化dp
C. Riding in a Lift Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/pr ...
- E. Riding in a Lift(Codeforces Round #274)
E. Riding in a Lift time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces 479E Riding in a Lift(dp)
题目链接:Codeforces 479E Riding in a Lift 题目大意:有一栋高N层的楼,有个无聊的人在A层,他喜欢玩电梯,每次会做电梯到另外一层.可是这栋楼里有个秘 密实验室在B层,所 ...
- Codeforces Round #274 (Div. 2) Riding in a Lift(DP 前缀和)
Riding in a Lift time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- Codeforces Round #274 (Div. 2) E. Riding in a Lift(DP)
Imagine that you are in a building that has exactly n floors. You can move between the floors in a l ...
- Codeforces Round #274 Div.1 C Riding in a Lift --DP
题意:给定n个楼层,初始在a层,b层不可停留,每次选一个楼层x,当|x-now| < |x-b| 且 x != now 时可达(now表示当前位置),此时记录下x到序列中,走k步,最后问有多少种 ...
- Codeforces 479E. Riding in a Lift (dp + 前缀和优化)
题目链接:http://codeforces.com/contest/479/problem/E 题意: 给定一个启示的楼层a,有一个不能去的楼层b,对于你可以去的下一个楼层必须满足你 ...
- Codeforces 479E Riding in a Lift
http://codeforces.com/problemset/problem/432/D 题目大意: 给出一栋n层的楼,初始在a层,b层不能去,每次走的距离必须小于当前位置到b的距离,问用电梯来回 ...
随机推荐
- cf486B OR in Matrix
B. OR in Matrix time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- ASP.NET MVC URL重写与优化(进阶篇)-继承RouteBase
原文地址:http://www.51csharp.com/MVC/882.html ASP.NET MVC URL重写与优化(进阶篇)-继承RouteBase玩转URL 引言-- 在初级篇中,我们 ...
- 最短路径问题:dijkstar
算法描述: 输入图G,源点v0,输出源点到各点的最短距离D 中间变量v0保存当前已经处理到的顶点集合,v1保存剩余的集合 1.初始化v1,D 2.计算v0到v1各点的最短距离,保存到D for eac ...
- HDU1394 Minimum Inversion Number(线段树OR归并排序)
Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- java中File类的相关学习
File类 1.关于系统路径分割符. 在Windows中,使用反斜杠“\”作为路径分割符,比如“c:\test”,但是java中反斜杠表示转义,所以需要用“C:\\test”在程序中来表示路径.还可以 ...
- 【转】ffmpeg中的sws_scale算法性能测试
经常用到ffmpeg中的sws_scale来进行图像缩放和格式转换,该函数可以使用各种不同算法来对图像进行处理.以前一直很懒,懒得测试和甄别应该使用哪种算法,最近的工作时间,很多时候需要等待别人.忙里 ...
- C# 实现简单状态机(参考代码)
using System; namespace StateMachine2.State { public enum AnimationState { Walk = , Dead, } public a ...
- c++之 常用类型
C/C++常用类型的范围 C/C++里常用的类型及表示范围如下表所示: 类型 sizeof 表示范围 说明 char 1 -128 - 127 -2^7 - (2^7 - 1) short 2 -32 ...
- .net中用到的一些方法
//文件操作string fullDirPath = Utils.GetMapPath(string.Format("/aspx/{0}/", buildPath)); Direc ...
- DataList、Repeater、GridView中的Checkbox取值问题
先看页面代码 <asp:DataList id="DataList1" runat="server" Width="100%" Rep ...