E. Riding in a Lift
time limit per test 2 seconds
memory limit per test 256 megabytes
input standard input
output standard output

Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers nabk (2 ≤ n ≤ 5000, 1 ≤ k ≤ 5000, 1 ≤ a, b ≤ na ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Sample test(s)
input
5 2 4 1
output
2
input
5 2 4 2
output
2
input
5 3 4 1
output
0
Note

Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.

Notes to the samples:

  1. In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
  2. In the second sample there are two possible sequences: (1, 2); (1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
  3. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.

唉卡在B题1个小时……最后发现C是sb题10分钟秒了

dp:f[i][j]表示走i步到j的方案数

f[i][j]=Σf[i-1][k] | k能到j

n^2k的时间效率会T,但是发现所有的k是一个连续的区间,所以我们可以用前缀和存所有f[i-1][k]的状态,然后O(1)递推

还可以更快

注意到b把1到n的区间分成两半,而且从a开始走一定只能到达a所在的一半,所以可以再优化。期望能缩掉一半复杂度

(其实我是因为2500w状态+取模很虚所以想出这不靠谱的优化)

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define pi 3.1415926535897932384626433832795028841971
#define mod 1000000007
using namespace std;
int n,a,b,k,L,R;
LL f[][];
LL sum[],tot;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int main()
{
n=read();a=read();b=read();k=read();
if (a<b)
{
L=;R=b-;
}else
{
L=b+;R=n;
}
f[][a]=;
for (int i=a;i<=n;i++)sum[i]=;
for (int i=;i<=k;i++)
{
for (int j=L;j<=R;j++)
{
int des=(b+j)>>;
if (j<b)
{
while(b-des<=des-j) des--;
while(b-(des+)>(des+)-j) des++;
f[i][j]=(sum[des]-f[i-][j]+mod)%mod;
}else
{
while (des-b<=j-des) des++;
while ((des-)-b>j-(des-)) des--;
f[i][j]=(sum[n]-sum[des-]-f[i-][j]+mod)%mod;
}
}
sum[]=;
for (int ll=;ll<=n;ll++)
sum[ll]=sum[ll-]+f[i][ll];
}
for (int i=L;i<=R;i++)
tot+=f[k][i];
printf("%lld\n",tot%mod);
}

cf479E

cf479E Riding in a Lift的更多相关文章

  1. codeforces 480C C. Riding in a Lift(dp)

    题目链接: C. Riding in a Lift time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  2. Codeforces Round #274 (Div. 1) C. Riding in a Lift 前缀和优化dp

    C. Riding in a Lift Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/pr ...

  3. E. Riding in a Lift(Codeforces Round #274)

    E. Riding in a Lift time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. Codeforces 479E Riding in a Lift(dp)

    题目链接:Codeforces 479E Riding in a Lift 题目大意:有一栋高N层的楼,有个无聊的人在A层,他喜欢玩电梯,每次会做电梯到另外一层.可是这栋楼里有个秘 密实验室在B层,所 ...

  5. Codeforces Round #274 (Div. 2) Riding in a Lift(DP 前缀和)

    Riding in a Lift time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  6. Codeforces Round #274 (Div. 2) E. Riding in a Lift(DP)

    Imagine that you are in a building that has exactly n floors. You can move between the floors in a l ...

  7. Codeforces Round #274 Div.1 C Riding in a Lift --DP

    题意:给定n个楼层,初始在a层,b层不可停留,每次选一个楼层x,当|x-now| < |x-b| 且 x != now 时可达(now表示当前位置),此时记录下x到序列中,走k步,最后问有多少种 ...

  8. Codeforces 479E. Riding in a Lift (dp + 前缀和优化)

    题目链接:http://codeforces.com/contest/479/problem/E 题意:         给定一个启示的楼层a,有一个不能去的楼层b,对于你可以去的下一个楼层必须满足你 ...

  9. Codeforces 479E Riding in a Lift

    http://codeforces.com/problemset/problem/432/D 题目大意: 给出一栋n层的楼,初始在a层,b层不能去,每次走的距离必须小于当前位置到b的距离,问用电梯来回 ...

随机推荐

  1. 《Algorithms 4th Edition》读书笔记——3.1 符号表(Elementary Symbol Tables)-Ⅳ

    3.1.4 无序链表中的顺序查找 符号表中使用的数据结构的一个简单选择是链表,每个结点存储一个键值对,如以下代码所示.get()的实现即为遍历链表,用equals()方法比较需被查找的键和每个节点中的 ...

  2. 自定义的string类

    头文件Hi_String.h #include<iostream> #include<string.h> using namespace std; class Hi_Strin ...

  3. 值传递 & 引用传递

    以下程序的输出结果是? public class Example { String str = new String("good"); char[] ch = { 'a', 'b' ...

  4. 关于sem_unlink什么时候删除信号量

    sem_unlink在man手册里有这么一段话: sem_unlink() removes the named semaphore referred to by name. The semaphore ...

  5. Non-negative Partial Sums(单调队列)

    Non-negative Partial Sums Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  6. Function.prototype.call.apply结合用法

     昨天在网上看到一个很有意思的js面试题,就跟同事讨论了下,发现刚开始很绕最后豁然开朗,明白过来之后发现还是挺简单的,跟大家分享下!  题目如下: var a = Function.prototype ...

  7. hdu 1728 逃离迷宫(dFS+优先队列)

    求转弯最少的走路方式!!!! #include<stdio.h> #include<string.h> #include<queue> using namespac ...

  8. [RxJS] Using Observable.create for fine-grained control

    Sometimes, the helper methods that RxJS ships with such as fromEvent, fromPromise etc don't always p ...

  9. java编程排错技巧

    一.Eclipse提示错误The type java.lang.CharSequence cannot be resolved. It is indirectly referenced from re ...

  10. 关于vi不正常退出产生的swp文件

    关于vi不正常退出产生的swp文件   非正常关闭vi编辑器时会生成一个.swp文件 关于swp文件 使用vi,经常可以看到swp这个文件,那这个文件是怎么产生的呢,当你打开一个文件,vi就会生成这么 ...