Codeforces Round #643 (Div. 2)(C ~ E)
C. Count Triangles
题目链接 :
https://codeforces.com/contest/1355/problem/C
题目大意 :
给你 A , B , C , D
问有多少种方法构造出三角形(X , Y , Z)使得 A ≤ X ≤ B ≤ Y ≤ C ≤ Z ≤ D
解题思路 :
假设我们有了 (X + Y) 的长度时(记 X + Y = i )
根据三角形两边之和大于第三边的性质 Z 的取值范围我们也能确定了
再根据题意 B <= Y <= C , 我们又能得到 X 的取值范围(即构成 X + Y = i 的方案数)
于是答案 ans += (Z的取值范围 * X的取值范围)
而我们已知 A ≤ X ≤ B ≤ Y ≤ C ≤ Z ≤ D 且 (X , Y , Z) 可构成三角形,那么 X + Y 的可取范围也就已知
所以我们可以通过枚举 X + Y 的长度来操作
AC_Code :
#include<bits/stdc++.h>
#define int long long
using namespace std;
signed main()
{
ios::sync_with_stdio(false);
int a , b , c , d , ans = ;
cin >> a >> b >> c >> d;
for(int i = c + ; i <= c + d ; i ++)
{
int l = max(a , i - c);
int r = min(b , i - b);
if(r < l) continue;
ans += (r - l + ) * (min(d + , i) - c);
}
cout << ans << '\n';
return ;
}
D. Game With Array
题目链接 :
https://codeforces.com/contest/1355/problem/D
题目大意 :
问你能否构造一个长度为 N 且和为 S 的序列
使得对于该序列你无法找到一个子序列使得子序列的和等于 K 或 S - K (0 <= K <= S)
解题思路 :
猜结论
我们构造一个前 N - 1项为 1,第 N 项为 S - N + 1 的序列
对于前 N - 1项构成的序列的和我们设为 K,那么第 N 项构成的序列和就为 S - K
这样就很好的使用上了题目给的信息,所以盲猜该构造方法是可行的
那么对于该序列,[ 1 , N - 1 ] 和 [ S - (N - 1) , S ] 的值我们都是可以通过选取子序列得到
而 [ N , S - N ] 的值无法得到,所以只要判断 N 是否小于等于 S - N 即可
AC_Code :
#include<bits/stdc++.h>
using namespace std;
signed main()
{
ios::sync_with_stdio(false);
int n , s;
cin >> n >> s ;
int ans = s - n;
if(ans >= n)
{
cout << "YES" << '\n';
for(int i = ; i <= n - ; i ++) cout << "1 ";
cout << ans + << '\n' << n << '\n';
}
else cout << "NO\n";
return ;
}
E. Restorer Distance
题目链接 :
https://codeforces.com/contest/1355/problem/E
题目大意 :
给你一个长度为 N 的序列 H 和三种操作
①、任选一个 Hi 使得 Hi = Hi + 1,代价为 A
②、任选一个 Hi 使得 Hi = Hi - 1,代价为 R
③、任选一个 Hi、Hj 使得 Hi = Hi + 1 , Hj = Hj - 1 ,代价为 M
现要使整个序列的数的值都相同,问需要花费的最小代价为多少
解题思路 :
操作③ = 操作① + 操作②,如果 A + R <= M,那么对于操作③我们只要用操作① + ②代替即可
因为最后整个序列的值都相同(我们记最后的值为 X),那么暴力的做法就是枚举 X 然后选择最小代价
显然暴力的做法复杂度是不行的
但是通过枚举我们会发现 , 在 X 的可行域内 F(X) 呈一种单峰函数(F(X)指最后序列值全为 X 的最小代价)
得到了这些信息后这道题就是道三分的裸题了
AC_Code :
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 3e5 + ;
int h[N] , n , a , r , m , ans = 1e18;
int check(int mid)
{
int res = , sum1 = , sum2 = ;
if(a + r <= m)
{
for(int i = ; i <= n ; i ++)
if(h[i] >= mid) res += (h[i] - mid) * r;
else res += (mid - h[i]) * a;
return res;
}
for(int i = ; i <= n ; i ++)
if(h[i] >= mid) sum1 += h[i] - mid;
else sum2 += mid - h[i];
res += min(sum1 , sum2) * m;
if(sum1 > sum2) res += (sum1 - sum2) * r;
else res += (sum2 - sum1) * a;
return res;
}
signed main()
{
ios::sync_with_stdio(false);
cin >> n >> a >> r >> m;
for(int i = ; i <= n ; i ++) cin >> h[i];
int L = , R = 1e9;
while(R - L > )
{
int midl = L + (R - L) / , midr = R - (R - L) / ;
if(check(midl) < check(midr)) R = midr;
else L = midl;
}
for(int i = L ; i <= R ; i ++) ans = min(ans , check(i));
cout << ans << '\n' ;
return ;
}
Codeforces Round #643 (Div. 2)(C ~ E)的更多相关文章
- Codeforces Round #643 (Div. 2) 题解 (ABCDE)
目录 A. Sequence with Digits B. Young Explorers C. Count Triangles D. Game With Array E. Restorer Dist ...
- Codeforces Round #643 (Div.2)
前言:这套cf我感觉出的很不错,AB就不说了,唯一有点欠缺的就是C和D的位置应该换一下,C出的挺不错,反正我当时没有想出来(赛后补题的时候其实也不难..听朋友说还可以FFT优化,然而我是个图论手并不会 ...
- Codeforces Round #643 (Div. 2) B. Young Explorers (思维,贪心)
题意:给你一组人\(a\),现在要将这些人进行分组,对于\(i\),只有某一组的人数\(\ge a_{i}\)时,\(i\)才可以加入这个组,问最多能够有多少组,(不必将所有人都选用). 题解:我们将 ...
- Codeforces Round #643 (Div. 2) E. Restorer Distance (贪心,三分)
题意:给你\(n\)个数,每次可以使某个数++,--,或使某个数--另一个++,分别消耗\(a,r,m\).求使所有数相同最少的消耗. 题解:因为答案不是单调的,所以不能二分,但不难发现,答案只有一个 ...
- Codeforces Round #643 (Div. 2) C. Count Triangles (数学公式)
题意:给你四个正整数\(A,B,C,D\),且\(A\le B\le C \le D\),有\(A\le x\le B\le y\le C \le z\le D\),求最多有多少组\((x,y,z)\ ...
- Codeforces Round #643 (Div. 2) D. Game With Array (思维,构造)
题意:给你两个正整数\(N\)和\(S\),构造一个长度为\(N\)并且所有元素和为\(S\)的正整数数组,问是否能找到一个\(K (0\le K \le S)\)使得这个数组的任意_子数组_的和都不 ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
随机推荐
- C++养成好的代码习惯
[C++小技巧] -------------------------------------------------------------#ifdef _DEBUG imwrite(" ...
- MySQL笔记总结-DDL语言
DDL语言 数据类型 一.数值型 1.整型 tinyint.smallint.mediumint.int/integer.bigint 1 2 3 4 8 特点: ①都可以设置无符号和有符号,默认有符 ...
- 在.NET Core中用最原生的方式读取Nacos的配置
背景 之前老黄写过一篇<ASP.NET Core结合Nacos来完成配置管理和服务发现>简单介绍了如何让.NET Core程序接入Nacos,之前的SDK里面更多的是对Nacos的Open ...
- 大数据MapReduce相关的运维题
1.在集群节点中/usr/hdp/2.4.3.0-227/hadoop-mapreduce/目录下,存在一个案例 JAR 包 hadoop-mapreduce-examples.jar.运行 JAR ...
- GitHub 热点速览 Vol.17:在?各家视频会员要不要?
作者:HelloGitHub-小鱼干 摘要:经济实用,用作上周的 GitHub 热点的横批再合适不过.先不说 GitHub Trending 上不止一个的会员共享项目,免你找好友刷脸要会员,这项目实在 ...
- Win7+Linux双系统,完美解决删除Linux后出现的任何问题!
首先,进入到Win7,安装MiniTool Partition Wizard Home Edition删除掉Linux分区, 点Yes 然后选中 这里选中这个,重写MBR,开机神马grub神马问题都没 ...
- Spring Boot JPA中使用@Entity和@Table
文章目录 默认实现 使用@Table自定义表格名字 在JPQL Queries中重写表格名字 Spring Boot JPA中使用@Entity和@Table 本文中我们会讲解如何在Spring Bo ...
- Scala教程之:PartialFunction
Scala中有一个很有用的traits叫PartialFunction,我看了下别人的翻译叫做偏函数,但是我觉得部分函数更加确切. 那么PartialFunction是做什么用的呢?简单点说Parti ...
- 【linux三剑客】sed命令
sed - stream editor for filtering and transforming text sed 流编辑器 strem edition,实现对文件的增删改替换查是Linux中第二 ...
- 【Linux常见命令】tail命令
tail - output the last part of files tail 命令可用于查看文件的内容,有一个常用的参数 -f 常用于查阅正在改变的日志文件. tail -f filename ...