LCA——倍增求解
LCA,即最近公共祖先,用于解决树上两点的最近公共祖先问题。
;
lca(1,2)=3;(原谅我的绘画水平)
LCA的求解有三种算法(我知道的)——tarjan,倍增,线段树(我只会两种),NOIp之前可以学了LCA,然后NOIp还是挂了,hhh
以下为经典倍增代码
/*
f[i,j]表示第i个节点向上跳2^j步所到达的节点
利用f[i,j]=f[f[i,j-1],j-1](向上跳j-1步后的节点再跳j-1步)递推求得
*/
void lca(){
for (int j=;j<=;j++)//保证j先i后
for (int i=;i<=n;i++)
f[i][j]=f[f[i][j-]][j-];
另附一道经典例(水)题
1036 商务旅行
某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间。
假设有N个城镇,首都编号为1,商人从首都出发,其他各城镇之间都有道路连接,任意两个城镇之间如果有直连道路,在他们之间行驶需要花费单位时间。该国公路网络发达,从首都出发能到达任意一个城镇,并且公路网络不会存在环。
你的任务是帮助该商人计算一下他的最短旅行时间。
输入文件中的第一行有一个整数N,1<=n<=30 000,为城镇的数目。下面N-1行,每行由两个整数a 和b (1<=a, b<=n; a<>b)组成,表示城镇a和城镇b有公路连接。在第N+1行为一个整数M,下面的M行,每行有该商人需要顺次经过的各城镇编号。
在输出文件中输出该商人旅行的最短时间。
5
1 2
1 5
3 5
4 5
4
1
3
2
5
7
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
vector<int> edge[];
int f[][],u,v,n,m,h[]={},fa[],ans;
bool vis[];
void add(int u,int v){
edge[u].push_back(v);
} void dfs(int now){
for (int i=;i<edge[now].size();i++){
int mid=edge[now][i];
if (vis[mid]) continue;
vis[mid]=;
fa[mid]=now;
h[mid]=h[now]+;
f[mid][]=now;
dfs(mid);
}
} void lca(){
for (int j=;j<=;j++)
for (int i=;i<=n;i++)
f[i][j]=f[f[i][j-]][j-];
} int query(int u,int v){//这里wa的原因返回值时出错
if (h[u]<h[v]) swap(u,v);
if (h[u]!=h[v]){
for (int i=;i>=;i--) {
if (h[f[u][i]]>h[v])
u=f[u][i];}
u=f[u][];
}
for (int i=;i>=;i--)
if (f[u][i]!=f[v][i]){
u=f[u][i];
v=f[v][i];
}
if (u==v) return u;
if (f[u][]==v) return v;//用于特判,我也不知道对不对
if (f[v][]==u) return u;
u=f[u][]; v=f[v][];//最后要再跳一步
if (u==v) return u;
} int main(){
scanf("%d",&n);
for (int i=;i<n-;i++){
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
vis[]=;
dfs();
fa[]=;
lca();
f[][]=;
scanf("%d",&m);
u=;
for (int i=;i<m;i++){ scanf("%d",&v);
int t=query(u,v);
h[]=;
ans+=h[u]+h[v]-*h[t];
u=v;
}
printf("%d",ans);
}
线段树的做法,下次填坑
LCA——倍增求解的更多相关文章
- poj 1986 Distance Queries(LCA:倍增/离线)
计算树上的路径长度.input要去查poj 1984. 任意建一棵树,利用树形结构,将问题转化为u,v,lca(u,v)三个点到根的距离.输出d[u]+d[v]-2*d[lca(u,v)]. 倍增求解 ...
- 【codevs2370】小机房的树 LCA 倍增
2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0 ...
- LCA倍增算法
LCA 算法是一个技巧性很强的算法. 十分感谢月老提供的模板. 这里我实现LCA是通过倍增,其实就是二进制优化. 任何一个数都可以有2的阶数实现 例如16可以由1 2 4 8组合得到 5可以由1 2 ...
- 洛谷 3379 最近公共祖先(LCA 倍增)
洛谷 3379 最近公共祖先(LCA 倍增) 题意分析 裸的板子题,但是注意这题n上限50w,我用的边表,所以要开到100w才能过,一开始re了两发,发现这个问题了. 代码总览 #include &l ...
- CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先)
CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先) 题意分析 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天, ...
- POJ.1986 Distance Queries ( LCA 倍增 )
POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- LCA(倍增在线算法) codevs 2370 小机房的树
codevs 2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点, ...
- LCA(最近公共祖先)——LCA倍增法
一.前人种树 博客:最近公共祖先 LCA 倍增法 博客:浅谈倍增法求LCA 二.沙场练兵 题目:POJ 1330 Nearest Common Ancestors 代码: const int MAXN ...
随机推荐
- SpringMVC Controller详解
SpringMVC Controller 介绍 一.简介 在SpringMVC 中,控制器Controller 负责处理由DispatcherServlet 分发的请求,它把用户请求的数据经过业务处理 ...
- Cadence画封装的步骤
画封装的步骤 打开 pad designer through 通孔 single 表贴 在焊盘设置时,soldermask层要比pastmask大0.1毫米 ...
- JavaScript学习总结二(Date对象的用法)
javascript Date对象的常用API 1:创建日期 Date 对象用于处理日期和时间. 可以通过 new 关键词来定义 Date 对象.以下代码定义了名为 myDate 的 Date 对象: ...
- 焦点轮播图——myfocus焦点图库
网站网址: http://demo.jb51.net/js/myfocus/demo.html 简单3步,你即可以用上myFocus. Step 1. 在html的标签内引入相关文件 <scri ...
- [引]LINQ to XML 类概述
本文转自:http://msdn.microsoft.com/zh-cn/library/bb387023.aspx 本主题提供 System.Xml.Linq 命名空间中 LINQ to XML 类 ...
- [记录] js判断数组key是否存在
数组中判断key是否存在 可以通过arrayObject.hasOwnProperty(key)来进行判断数组key是否存在,返回的是boolean值,如果存在就返回true,不存在就返回false ...
- 【linux操作命令】crontab
带续写... 版权声明:本文为博主原创文章,未经博主允许不得转载.
- Decorator设计模式浅谈
装饰类跟基础组件都实现了目标接口,是为了匹配正确的类型.Java中的IO设计就是典型的Decorator设计模式. 装饰模式产生的初衷是, 对默认实现类的行为进行扩展. 由于装饰类的构造器接受的参数是 ...
- 一步一步创建一个简单的Package(1)
创建Package之前首先我们理解需求: 数据源是一组历史货币数据包含在平面文件SampleCurrencyData.txt中,源数据中有四列. 下面是SampleCurrencyData.txt文件 ...
- ios code style
注释 建议使用VVDocumenter插件 多行注释 格式: /** 注释内容 */ 单行注释 格式: ///在对文件.类.函数进行注释时推荐使用多行注释,在函数体内对代码块进行注释时,使用单行注释 ...