【NOI2018】屠龙勇士(数论,exgcd)

题面

洛谷

题解

考场上半个小时就会做了,一个小时就写完了。。

然后发现没过样例,结果大力调发现中间值爆\(longlong\)了,然后就没管了。。

然后又没切掉。。。我是真的傻逼。。。

首先每次选择的刀一定,直接一个\(multiset\)就算出来了。

然后对于每关都单独解一个方程

\(atk[i]x+p[i]y=a[i]\),直接\(exgcd\)求解即可。

但是注意题目方程的含义,所以\(x\gt 0,y\le 0\)

所以要解出来之后还需要额外的计算一下(就是这里可能爆\(ll\)...)

那么此时对于每一个方程,我们都得到了一个最小的通解\(X0[i]\)

那么,一个可行解\(X=X0[i]+kd[i]\),其中\(d[i]=p[i]/gcd(p[i],atk[i])\),\(k\)是常数。

考虑如何合并两个解,

\(X0[1]+k_1d[1]=X0[2]+k_2d[2]\)

不妨令\(X0[2]\gt X0[1]\),移项得

\(X0[2]-X0[1]=k_1d[1]+k_2d[2]\)

还是一个\(exgcd\),同时\(k_1\ge 0,k_2\le 0\),还是这里额外算一下,中间值可能爆\(ll\)

然后就可以算出这两个方程合并后的最小特解\(X0\),

那么这两个方程合并后的通解就成了\(X=X0+lcm(d[1],d[2])\)

这样子顺次合并就行了。

至于中间值爆\(ll\)的问题,发现额外计算一下的过程就是一个取模+减法

所以龟速乘解决就好了。

然后无解就是某一步的时候\(exgcd\)无解,直接判就好。

为啥他们都说是拓展CRT,我怎么不知道啊???

这题我的代码写得好乱啊

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
using namespace std;
#define ll long long
#define MAX 100100
inline ll read()
{
ll x=0;bool fl=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')fl=true,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-48,ch=getchar();
return fl?-x:x;
}
int n,m;
ll a[MAX],p[MAX],g[MAX],atk[MAX];
ll LCM(ll a,ll b){return (a/__gcd(a,b))*b;}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0){x=1;y=0;return a;}
ll d=exgcd(b,a%b,y,x);
y-=a/b*x;return d;
}
namespace Choose
{
multiset<ll> S;
multiset<ll>::iterator it,itt;
void Work()
{
for(int i=1;i<=n;++i)
{
it=itt=S.upper_bound(a[i]);
if(it!=S.begin())--itt,atk[i]=*itt,S.erase(itt);
else atk[i]=*it,S.erase(it);
S.insert(g[i]);
}
}
}
ll X0[MAX],d[MAX];
void init()
{
Choose::S.clear();
memset(a,0,sizeof(a));memset(atk,0,sizeof(atk));
memset(g,0,sizeof(g));memset(p,0,sizeof(p));
memset(X0,0,sizeof(X0));memset(d,0,sizeof(d));
}
ll Multi(ll a,ll b,ll p)
{
ll s=0;
while(b){if(b&1)s=(s+a)%p;a=(a+a)%p;b>>=1;}
return (s+p)%p;
}
bool Solve()
{
ll x,y;
for(int i=1;i<=n;++i)
{
ll D=__gcd(atk[i],p[i]),t,G,bs;
if(a[i]%D)return false;
exgcd(atk[i]/D,p[i]/D,x,y);
G=p[i]/D;t=Multi(x,a[i]/D,G);
if(t==0)t+=G;
x=t;y=(a[i]-atk[i]*x)/p[i];
if(y>0)
{
t=-y;G=atk[i]/D;
t=(t%G+G)%G;bs=(t+y)/G;
y=-t;x+=bs*(p[i]/D);
}
X0[i]=x,d[i]=p[i]/D;
}
for(int i=2;i<=n;++i)
{
if(X0[i]<X0[i-1])swap(X0[i],X0[i-1]),swap(d[i],d[i-1]);
ll c=X0[i]-X0[i-1],D=__gcd(d[i],d[i-1]),G,t,bs;
if(c%D!=0)return false;
exgcd(d[i-1]/D,d[i]/D,x,y);
G=d[i]/D;t=Multi(x,c/D,G);
x=t;y=(c-x*d[i-1])/d[i];
if(y>0)
{
t=-y;G=d[i-1]/D;
t=(t%G+G)%G;bs=(t+y)/D;
y=t;x+=bs*(d[i]/D);
}
X0[i]-=d[i]*y;d[i]=LCM(d[i],d[i-1]);
}
return true;
}
int main()
{
freopen("dragon.in","r",stdin);
freopen("dragon.out","w",stdout);
int T=read();
while(T--)
{
init();
n=read();m=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)p[i]=read();
for(int i=1;i<=n;++i)g[i]=read();
for(int i=1;i<=m;++i)Choose::S.insert(read());
Choose::Work();
if(!Solve())puts("-1");
else printf("%lld\n",X0[n]);
}
return 0;
}

【BZOJ5418】【NOI2018】屠龙勇士(数论,exgcd)的更多相关文章

  1. BZOJ5418:[NOI2018]屠龙勇士(exCRT,exgcd,set)

    Description Input Output Sample Input 23 33 5 74 6 107 3 91 9 10003 23 5 64 8 71 1 11 1 Sample Outpu ...

  2. BZOJ5418[Noi2018]屠龙勇士——exgcd+扩展CRT+set

    题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一 ...

  3. BZOJ5418 NOI2018屠龙勇士(excrt)

    显然multiset求出每次用哪把剑.注意到除了p=1的情况,其他数据都保证了ai<pi,于是先特判一下p=1.比较坑的是还可能存在ai=pi,稍微考虑一下. 剩下的部分即解bix≡ai(mod ...

  4. P4774 [NOI2018]屠龙勇士

    P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) ...

  5. [洛谷P4774] [NOI2018]屠龙勇士

    洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...

  6. BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt

    BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt Description www.lydsy.com/JudgeOnline/upload/noi2018day2.pdf 每次用 ...

  7. uoj396 [NOI2018]屠龙勇士

    [NOI2018]屠龙勇士 描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 1∼n 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命值 ai .同时每条巨龙拥有恢复能 ...

  8. 洛谷 P4774 [NOI2018] 屠龙勇士

    链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前 ...

  9. 洛谷P4774 BZOJ5418 LOJ2721 [NOI2018]屠龙勇士(扩展中国剩余定理)

    题目链接: 洛谷 BZOJ LOJ 题目大意:这么长的题面,就饶了我吧emmm 这题第一眼看上去没法列出同余方程组.为什么?好像不知道用哪把剑杀哪条龙…… 仔细一看,要按顺序杀龙,所以获得的剑出现的顺 ...

  10. 洛谷 P4774 / loj 2721 [NOI2018] 屠龙勇士 题解【同余】【exgcd】【CRT】

    推导过程存在漏洞+exCRT板子没打熟于是期望得分÷实际得分=∞? 题目描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 \(1\sim n​\) 顺序杀掉 \(n​\ ...

随机推荐

  1. Openwrt能用的花生壳客户端

    http://files.cnblogs.com/mazhiyong/phddns.zip 使用教程可参考官方文档 http://service.oray.com/question/116.html

  2. 《C++设计新思维》勘误,附C++14新解法

    勘误: 原书(中文版)3.13节,65-69页中GenScatterHierarchy以及FieldHelper均存在问题,当TypeList中类型有重复时,无法通过编译(原因在于“二义性基类”). ...

  3. 【bzm-Random CSV Data Set Config】 -jmeter - 文件中随机取参的方法,(插件自带)

    文件中随机取参数的方法  Random CSV Data Set Config

  4. phpcms v9如何给父级单页栏目添加内容

    对于phpcms单页的调用相信大家都应该没问题,那么如果我们在后台添加的单页有二层甚至更多的时候,这样在管理内容上是没有给父级栏目添加内容这一功能的!那么我们该怎么实现这个功能并调用呢? 首先我们要修 ...

  5. Python中元祖,列表,字典的区别

    Python中有3种內建的数据结构:列表.元祖和字典: 1.列表 list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个序列的项目. 列表中的项目应该包括在方括号中,这样Python就知道 ...

  6. sqli-labs学习笔记 DAY1

    DAY 1 准备工作 安装phpstudy 安装配置sqli-labs 学习笔记 SQL语句的注释:–, # +在URL经过编码后会编码为空格 SQL语句的查询语句:SELECT column_nam ...

  7. java-length 、length()、size()的区别

    public static void main(String[] args) { //length .length().size()的区别 //length属性 针对数组长度 String a[]={ ...

  8. python中的os.walk

    原文出处:https://www.jianshu.com/p/bbad16822eab python中os.walk是一个简单易用的文件.目录遍历器,可以帮助我们高效的处理文件.目录方面的事情. 1. ...

  9. Scrum立会报告+燃尽图(十月十八日总第九次):功能细化与数据库设计

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 项目地址:https://git.coding.net/zhang ...

  10. java 数据库查询Date类型字段 没有了时分秒 全为 00 的解决办法

    当取出这个值的时候只能用java.sql.Date而且只能显示年月日,我想知道如何才能显示时分秒   PS:不改变用getdate()存入的前提下! 解决方法:将getDate()方法改为getTim ...