P3539 [POI2012]ROZ-Fibonacci Representation

题意:给一个数,问最少可以用几个斐波那契数加加减减凑出来

多组数据10 数据范围1e17


第一次瞬间yy出做法,直接上去艹了。

写完了交了对了开始想证明

策略:对于一个数\(k\),有两种可能

  1. 存在一个\(f[i]==k\) 直接返回即可
  2. 存在\(f[i]<k<f[i+1]\),这时候使用\(|k-f[i]|\)与\(|f[i+1]-k|\)的较小者所代表的\(f[i]\),然后分治处理

感性证明:这样规模减小的快(其实是不会证orz)


Code:

#include <cstdio>
#define ll long long
ll f[87],k,cnt;
void init()
{
f[1]=f[2]=1;
for(int i=3;i<=86;i++)
f[i]=f[i-1]+f[i-2];
}
void divide(ll d)
{
cnt++;
for(int i=1;i<86;i++)
{
if(d==f[i]) return;
if(d>f[i]&&d<f[i+1])
{
if(d-f[i]>f[i+1]-d)
divide(f[i+1]-d);
else
divide(d-f[i]);
break;
}
}
}
int main()
{
init();
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld",&k);
cnt=0;
divide(k);
printf("%d\n",cnt);
}
return 0;
}

2018.7.15

洛谷 P3539 [POI2012]ROZ-Fibonacci Representation 解题报告的更多相关文章

  1. 洛谷 P2323 [HNOI2006]公路修建问题 解题报告

    P2323 [HNOI2006]公路修建问题 题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 思路: 二分答案 然后把每条能加的大边都加上,然后加小边 但在洛谷的题 ...

  2. 洛谷P3539 [POI2012] ROZ-Fibonacci Representation

    题目传送门 转载自:five20,转载请注明出处 本来看到这题,蒟蒻是真心没有把握的,还是five20大佬巨orz 首先由于斐波拉契数的前两项是1,1 ,所以易得对于任何整数必能写成多个斐波拉契数加减 ...

  3. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

  4. 洛谷 P3299 [SDOI2013]保护出题人 解题报告

    P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企 ...

  5. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  6. 洛谷 P2463 [SDOI2008]Sandy的卡片 解题报告

    P2463 [SDOI2008]Sandy的卡片 题意 给\(n(\le 1000)\)串,定义两个串相等为"长度相同,且一个串每个数加某个数与另一个串完全相同",求所有串的最长公 ...

  7. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  8. 洛谷 画栅栏Painting the Fence 解题报告

    P2205 画栅栏Painting the Fence 题目描述 \(Farmer\) \(John\) 想出了一个给牛棚旁的长围墙涂色的好方法.(为了简单起见,我们把围墙看做一维的数轴,每一个单位长 ...

  9. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

随机推荐

  1. Tp框架之命名空间

    命名空间,相当于虚拟目录 实现自动加载类的机制 初始命名空间:Library文件夹 初始命名空间下面有很多根命名空间: 1.Library里面的文件夹 2.APP的模块文件夹 在tp框架中,只有这两个 ...

  2. Python数据分析开发环境

    准备工作 下载并安装最新版本的Anaconda 下载并安装最新版本的Visual Studio Code 编辑器 Tips: 可以选择自己喜欢并且熟悉的编辑器或IDE.如:VIM.Emacs.Note ...

  3. JMeter学习笔记(二) 一些实际应用的基础操作

    我在CSDN上面找到一位大师整理的jmeter性能测试基础,分享到这里继续学习 https://blog.csdn.net/u011541946/article/category/6893578/1

  4. Python不生成HTMLTestRunner报告-转载学习

    1.问题:Python中同一个.py文件中同时用unittest框架和HtmlReport框架后,HtmlReport不被执行. 2.为什么?其实不是HtmlReport不被执行,也不是HtmlRep ...

  5. Scrapy爬去哪儿~上海一日游门票并存入MongoDB数据库

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZwAAAGGCAYAAABPDDfEAAAgAElEQVR4nOy9C3Rb1Z3/+z1Hkm35mT

  6. 洛谷【P1052】过河

    https://www.luogu.org/problemnew/show/P1052 题目描述 在河上有一座长度为 L 的独木桥, 一只青蛙想沿着独木桥从河的一侧跳到另一侧. 在桥上有一些石子, 青 ...

  7. Python爬虫入门(3-4):Urllib库的高级用法

    1.分分钟扒一个网页下来 怎样扒网页呢?其实就是根据URL来获取它的网页信息,虽然我们在浏览器中看到的是一幅幅优美的画面,但是其实是由浏览器解释才呈现出来的,实质它 是一段HTML代码,加 JS.CS ...

  8. PIGCMS 关闭聊天机器人(小黄鸡)

    无脑操作举例 1.找到 WeixinAction.class.php 文件,路径: 你的版本\PigCms\Lib\Action\Home 2.查询 function chat ,在 chat() 函 ...

  9. 冲刺ing-6

    第六次Scrum冲刺 队员完成的任务 队员 完成任务 吴伟华 Leangoo的看板截图,燃尽图 蔺皓雯 编写博客,界面设计 蔡晨旸 界面设计 曾茜 测试 鲁婧楠 学习后端设计 杨池宇 界面设计 成员遇 ...

  10. 第二次c++作业(觉得渐渐入门系列)

    其实说实话,我还是不敢很确定地说面向对象和面向过程这两种语言,我确实能分得开,但是我觉得倒是比以前好很多了.//(大概是谈了对象,知道了什么是面向对象编程) 1.从个人角度来说, a:面向过程就是-- ...