洛谷 P3539 [POI2012]ROZ-Fibonacci Representation 解题报告
P3539 [POI2012]ROZ-Fibonacci Representation
题意:给一个数,问最少可以用几个斐波那契数加加减减凑出来
多组数据10 数据范围1e17
第一次瞬间yy出做法,直接上去艹了。
写完了交了对了开始想证明
策略:对于一个数\(k\),有两种可能
- 存在一个\(f[i]==k\) 直接返回即可
- 存在\(f[i]<k<f[i+1]\),这时候使用\(|k-f[i]|\)与\(|f[i+1]-k|\)的较小者所代表的\(f[i]\),然后分治处理
感性证明:这样规模减小的快(其实是不会证orz)
Code:
#include <cstdio>
#define ll long long
ll f[87],k,cnt;
void init()
{
f[1]=f[2]=1;
for(int i=3;i<=86;i++)
f[i]=f[i-1]+f[i-2];
}
void divide(ll d)
{
cnt++;
for(int i=1;i<86;i++)
{
if(d==f[i]) return;
if(d>f[i]&&d<f[i+1])
{
if(d-f[i]>f[i+1]-d)
divide(f[i+1]-d);
else
divide(d-f[i]);
break;
}
}
}
int main()
{
init();
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld",&k);
cnt=0;
divide(k);
printf("%d\n",cnt);
}
return 0;
}
2018.7.15
洛谷 P3539 [POI2012]ROZ-Fibonacci Representation 解题报告的更多相关文章
- 洛谷 P2323 [HNOI2006]公路修建问题 解题报告
P2323 [HNOI2006]公路修建问题 题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 思路: 二分答案 然后把每条能加的大边都加上,然后加小边 但在洛谷的题 ...
- 洛谷P3539 [POI2012] ROZ-Fibonacci Representation
题目传送门 转载自:five20,转载请注明出处 本来看到这题,蒟蒻是真心没有把握的,还是five20大佬巨orz 首先由于斐波拉契数的前两项是1,1 ,所以易得对于任何整数必能写成多个斐波拉契数加减 ...
- 洛谷 P1852 [国家集训队]跳跳棋 解题报告
P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...
- 洛谷 P3299 [SDOI2013]保护出题人 解题报告
P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企 ...
- 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告
P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...
- 洛谷 P2463 [SDOI2008]Sandy的卡片 解题报告
P2463 [SDOI2008]Sandy的卡片 题意 给\(n(\le 1000)\)串,定义两个串相等为"长度相同,且一个串每个数加某个数与另一个串完全相同",求所有串的最长公 ...
- 洛谷 P2774 方格取数问题 解题报告
P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
- 洛谷 画栅栏Painting the Fence 解题报告
P2205 画栅栏Painting the Fence 题目描述 \(Farmer\) \(John\) 想出了一个给牛棚旁的长围墙涂色的好方法.(为了简单起见,我们把围墙看做一维的数轴,每一个单位长 ...
- 洛谷 P2764 最小路径覆盖问题 解题报告
P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...
随机推荐
- javaweb(二十二)——基于Servlet+JSP+JavaBean开发模式的用户登录注册
一.Servlet+JSP+JavaBean开发模式(MVC)介绍 Servlet+JSP+JavaBean模式(MVC)适合开发复杂的web应用,在这种模式下,servlet负责处理用户请求,jsp ...
- React入门基础(学习笔记)
这篇博客是我通过阅读React官方文档的教程总结的学习笔记,翻译可能存在误差,如有疑问请参见http://reactjs.cn/react/docs/tutorial.html . 一.所需文件 在编 ...
- 【xml_Class、xmlElementNode_Class 类】使用说明
xml_Class.xmlElementNode_Class这两个类是针对XML相关操作的类. 1.xml_Class类是针对XML文档操作的类 目录: 类型 原型 参数 返回 说明 Sub Sub ...
- cmake-index-3.11.4机翻
index next | CMake » git-stage git-master latest release 3.13 3.12 3.11.4 3.10 3.9 3.8 3.7 3.6 3.5 3 ...
- Amazon - removed your selling privileges and placed a temporary hold on any funds - 1
Hello, We are writing to let you know that we have removed your selling privileges and placed a temp ...
- 1019psp
1.本周psp: 2.本周进度条: 3.累计进度图(折线图): 4.psp饼状图:
- 随机生成30道四则运算题NEW
代码: #include <iostream> #include <time.h> using namespace std; void main() { srand((int) ...
- P4tutorial实战
Tutorial样例实战 GitHub仓库地址 参考博客 实验一:SIGCOMM_2015/Sourse_Routing 实验环境: OS:Ubuntu16.04 bmv2:behavioral-mo ...
- POJ题目分类推荐 (很好很有层次感)
著名题单,最初来源不详.直接来源:http://blog.csdn.net/a1dark/article/details/11714009 OJ上的一些水题(可用来练手和增加自信) (POJ 3299 ...
- Kafka Shell基本命令
创建kafka topic bin/kafka-topics.sh --zookeeper node01:2181 --create --topic t_cdr --partitions 30 --r ...