P3539 [POI2012]ROZ-Fibonacci Representation

题意:给一个数,问最少可以用几个斐波那契数加加减减凑出来

多组数据10 数据范围1e17


第一次瞬间yy出做法,直接上去艹了。

写完了交了对了开始想证明

策略:对于一个数\(k\),有两种可能

  1. 存在一个\(f[i]==k\) 直接返回即可
  2. 存在\(f[i]<k<f[i+1]\),这时候使用\(|k-f[i]|\)与\(|f[i+1]-k|\)的较小者所代表的\(f[i]\),然后分治处理

感性证明:这样规模减小的快(其实是不会证orz)


Code:

#include <cstdio>
#define ll long long
ll f[87],k,cnt;
void init()
{
f[1]=f[2]=1;
for(int i=3;i<=86;i++)
f[i]=f[i-1]+f[i-2];
}
void divide(ll d)
{
cnt++;
for(int i=1;i<86;i++)
{
if(d==f[i]) return;
if(d>f[i]&&d<f[i+1])
{
if(d-f[i]>f[i+1]-d)
divide(f[i+1]-d);
else
divide(d-f[i]);
break;
}
}
}
int main()
{
init();
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld",&k);
cnt=0;
divide(k);
printf("%d\n",cnt);
}
return 0;
}

2018.7.15

洛谷 P3539 [POI2012]ROZ-Fibonacci Representation 解题报告的更多相关文章

  1. 洛谷 P2323 [HNOI2006]公路修建问题 解题报告

    P2323 [HNOI2006]公路修建问题 题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 思路: 二分答案 然后把每条能加的大边都加上,然后加小边 但在洛谷的题 ...

  2. 洛谷P3539 [POI2012] ROZ-Fibonacci Representation

    题目传送门 转载自:five20,转载请注明出处 本来看到这题,蒟蒻是真心没有把握的,还是five20大佬巨orz 首先由于斐波拉契数的前两项是1,1 ,所以易得对于任何整数必能写成多个斐波拉契数加减 ...

  3. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

  4. 洛谷 P3299 [SDOI2013]保护出题人 解题报告

    P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企 ...

  5. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  6. 洛谷 P2463 [SDOI2008]Sandy的卡片 解题报告

    P2463 [SDOI2008]Sandy的卡片 题意 给\(n(\le 1000)\)串,定义两个串相等为"长度相同,且一个串每个数加某个数与另一个串完全相同",求所有串的最长公 ...

  7. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  8. 洛谷 画栅栏Painting the Fence 解题报告

    P2205 画栅栏Painting the Fence 题目描述 \(Farmer\) \(John\) 想出了一个给牛棚旁的长围墙涂色的好方法.(为了简单起见,我们把围墙看做一维的数轴,每一个单位长 ...

  9. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

随机推荐

  1. javaweb(二十)——JavaBean总结

    一.什么是JavaBean JavaBean是一个遵循特定写法的Java类,它通常具有如下特点: 这个Java类必须具有一个无参的构造函数 属性必须私有化. 私有化的属性必须通过public类型的方法 ...

  2. 三边定位 c#

    MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发.数据可视化.数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分. 项目中用到三 ...

  3. JS 中屏幕、浏览器和文档的高度、宽度和距离

    1.各种对象 window.screen - 屏幕,window - 窗口,document.documentElement & document.body.parentNode - 文档,d ...

  4. Python基础灬文件常用操作

    文件常用操作 文件内建函数和方法 open() :打开文件 read():输入 readline():输入一行 seek():文件内移动 write():输出 close():关闭文件 写文件writ ...

  5. RNN: Feed Forward, Back Propagation Through Time and Truncated Backpropagation Through Time

    原创作品,转载请注明出处哦~ 了解RNN的前向.后向传播算法的推导原理是非常重要的,这样, 1. 才会选择正确的激活函数: 2. 才会选择合适的前向传播的timesteps数和后向传播的timeste ...

  6. PCA(主成分析)

    PCA通过将高维空间向量映射到低维,对于数据进行处理

  7. scrapy-redis+selenium+webdriver解决动态代理ip和user-agent的问题(全网唯一完整代码解决方案)

    问题描述:在爬取一些反爬机制做的比较好的网站时,经常会遇见一个问题就网站代码是通过js写的,这种就无法直接使用一般的爬虫工具爬取,这种情况一般有两种解决方案 第一种:把js代码转为html代码,然后再 ...

  8. PCAP文件格式分析(做抓包软件之必备)

    转载源:http://blog.csdn.net/anzijin/article/details/2008333 http://www.ebnd.cn/2009/09/07/file-format-a ...

  9. socket编程 123

    1. 预备知识 一直以来很少看到有多少人使用php的socket模块来做一些事情,大概大家都把它定位在脚本语言的范畴内吧,但是其实php的socket模块可以做很多事情,包括做ftplist,http ...

  10. Scrum立会报告+燃尽图(Beta阶段第二周第六次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2414 项目地址:https://coding.net/u/wuyy694 ...