Foj 2299 Prefix

题意

给定串s、正整数n,问有多少长度为n的字符串t满足:s[0...i]是t的子串,s[0...i+1]不是。

题解

求有多少长度为n的字符串t满足:s[0...i]是t的子串

这样求出来的数列就是答案的一个前缀和。

具体求法可以对于s[0...i]建一个AC自动机,列出dp式子,状态转移矩阵就很好构造了。

现场主要是没想到每个前缀的方案数要分开求。

代码

#include<cstdio>
#include<cmath>
#include<vector>
#include<iostream>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define rep(i, a, b) for(int i=(a); i<(b); i++)
#define sz(a) (int)a.size()
#define de(a) cout << #a << " = " << a << endl
#define dd(a) cout << #a << " = " << a << " "
#define all(a) a.begin(), a.end()
#define endl "\n"
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi; const int N = 22, P = 1e9+7; int n, m;
int f[N];
string s; int kpow(int a, int b) {
int res = 1;
while(b) {
if(b&1) res = 1ll*res*a%P;
a = 1ll*a*a%P;
b >>= 1;
}
return res;
} inline int add(int a, int b) {
a+=b;
if(a>=P) a-=P;
return a;
}
inline int sub(int a, int b) {
a-=b;
if(a<0) a+=P;
return a;
}
inline int mul(int a, int b) {
return 1ll*a*b%P;
} struct Mat {
static const int N = ::N;
int a[N][N], n;
Mat(){} Mat(int _n, int v) { n = _n; rep(i, 0, n) rep(j, 0, n) a[i][j] = i==j ? v : 0; }
Mat operator * (const Mat &c) const {
Mat res(n, 0);
rep(i, 0, n) rep(j, 0, n) rep(k, 0, n) res.a[i][j] = add(res.a[i][j], mul(a[i][k], c.a[k][j]));
return res;
}
Mat operator ^ (int b) const {
Mat res(n, 1), a = *this;
while(b) {
if(b&1) res = res*a;
a = a*a;
b>>=1;
}
return res;
}
};
struct Trie {
static const int N = ::N, M = 26;
int ne[N][M], fail[N], fa[N], rt, L, ed[N];
void init() {
fill_n(ne[fail[0] = N-1], M, 0);
fill_n(ed, L, 0);
L = 0;
rt = newnode();
}
int newnode() {
fill_n(ne[L], M, 0);
return L++;
}
void add(string s) {
int p = rt;
rep(i, 0, sz(s)) {
int c = s[i] - 'A';
if(!ne[p][c]) ne[p][c] = newnode(), fa[L-1] = p;
p = ne[p][c];
}
ed[p] = 1;
}
void build() {
vi v;v.pb(rt);
rep(i, 0, sz(v)) {
int c = v[i];
rep(i, 0, M) ne[c][i] ?
v.pb(ne[c][i]), fail[ne[c][i]] = ne[fail[c]][i] :
ne[c][i] = ne[fail[c]][i];
}
}
Mat getMat() {
Mat mat(L, 0);
rep(i, 0, L) rep(j, 0, M) {
int nex = ed[i] ? i : ne[i][j];
++mat.a[i][nex];
}
return mat;
}
}ac; int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
int T;
cin >> T;
while(T--) {
cin >> n >> m >> s;
f[0] = kpow(26, n);
rep(i, 1, m+1) {
ac.init();
ac.add(s.substr(0, i));
ac.build();
Mat res = ac.getMat() ^ n;
f[i] = res.a[0][i];
}
rep(i, 0, m) f[i] = sub(f[i], f[i+1]);
rep(i, 0, m+1) cout << f[i] << endl;
}
return 0;
}

Foj 2299 Prefix(AC自动机、DP)的更多相关文章

  1. POJ1625 Censored!(AC自动机+DP)

    题目问长度m不包含一些不文明单词的字符串有多少个. 依然是水水的AC自动机+DP..做完后发现居然和POJ2778是一道题,回过头来看都水水的... dp[i][j]表示长度i(在自动机转移i步)且后 ...

  2. HDU2296 Ring(AC自动机+DP)

    题目是给几个带有价值的单词.而一个字符串的价值是 各单词在它里面出现次数*单词价值 的和,问长度不超过n的最大价值的字符串是什么? 依然是入门的AC自动机+DP题..不一样的是这题要输出具体方案,加个 ...

  3. HDU2457 DNA repair(AC自动机+DP)

    题目一串DNA最少需要修改几个基因使其不包含一些致病DNA片段. 这道题应该是AC自动机+DP的入门题了,有POJ2778基础不难写出来. dp[i][j]表示原DNA前i位(在AC自动机上转移i步) ...

  4. hdu 4117 GRE Words AC自动机DP

    题目:给出n个串,问最多能够选出多少个串,使得前面串是后面串的子串(按照输入顺序) 分析: 其实这题是这题SPOJ 7758. Growing Strings AC自动机DP的进阶版本,主题思想差不多 ...

  5. hdu 2457(ac自动机+dp)

    题意:容易理解... 分析:这是一道比较简单的ac自动机+dp的题了,直接上代码. 代码实现: #include<stdio.h> #include<string.h> #in ...

  6. HDU 2425 DNA repair (AC自动机+DP)

    DNA repair Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  7. HDU2296——Ring(AC自动机+DP)

    题意:输入N代表字符串长度,输入M代表喜欢的词语的个数,接下来是M个词语,然后是M个词语每个的价值.求字符串的最大价值.每个单词的价值就是单价*出现次数.单词可以重叠.如果不止一个答案,选择字典序最小 ...

  8. tyvj P1519 博彩游戏(AC自动机+DP滚动数组)

    P1519 博彩游戏 背景 Bob最近迷上了一个博彩游戏…… 描述 这个游戏的规则是这样的:每花一块钱可以得到一个随机数R,花上N块钱就可以得到一个随机序列:有M个序列,如果某个序列是产生的随机序列的 ...

  9. bzoj 1030 [JSOI2007]文本生成器(AC自动机+DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1030 [题意] 给n个小串,随机构造一个长为m的大串,一个串合法当且仅当包含一个或多个 ...

随机推荐

  1. 吴恩达《深度学习》第五门课(1)循环序列模型(RNN)

    1.1为什么选择序列模型 (1)序列模型广泛应用于语音识别,音乐生成,情感分析,DNA序列分析,机器翻译,视频行为识别,命名实体识别等众多领域. (2)上面那些问题可以看成使用(x,y)作为训练集的监 ...

  2. Linux du查询文件大小

    #查询磁盘当前容量信息 $df -h   #查询当前目录下所有文件的大小 $du -m .   #两种方式查询 仅当前目录下的子文件(文件夹)大小 $du -sh /cloud/*   $du -h ...

  3. iOS 自定义步骤进度条

    新项目要做入驻功能,其中包括一个入住流程,类似登录或者注册流程如下图. 之前想着用自己绘图来做,可是又懒不想多写代码,所以就想着能不能用进度条来做. 1.用进度条做的首先要解决的是进度条的高度问题,可 ...

  4. 【PhotoShop】模糊图片清晰处理

    1.Ctrl+J复制出背景副本.对副本模式选择“亮度”. 2.选择“滤镜”菜单下的“锐化>USM锐化”命令,在设置窗口中适当调节一下锐化参数,根据你原图模糊的情况来调节,本图采用锐化数量为“15 ...

  5. Apache mod_rewrite

    mod_rewrite是Apache的一个非常强大的功能,它可以实现伪静态页面.下面我详细说说它的使用方法!对初学者很有用的哦! 1.检测Apache是否支持mod_rewrite phpinfo() ...

  6. layer子窗口与父窗口传值

    layer作为优秀的jquery框架,可以用作弹出组件.日历.分页等,而且实现简单,只有几十k的大小. 此处给出弹出窗口时子窗口与父窗口的传值.js和css这里不展示引入(以下给出目录结构的图片),仅 ...

  7. 【转】如何用Maven创建web项目(具体步骤)

    使用eclipse插件创建一个web project 首先创建一个Maven的Project如下图 我们勾选上Create a simple project (不使用骨架) 这里的Packing 选择 ...

  8. Eclipse3.2查找jre的问题

    前几天遇到一个问题,最开始电脑上使用的是解压的JDK(带jre),但是不能打开jar文件.所以从网上下载了一个jre1.8,然后问题来了,Eclipse打开就报错,弹出一个框,在eclipse的目录下 ...

  9. bash shell学习笔记(一)—— 常用命令

    一.基本的bash shell命令 1.默认bash shell 提示符是美元符号($); 2.bash手册 使用man命令来访问存储在Linux系统上的手册页面,如: bogon:~ Mac$ ma ...

  10. High Performance MySQL笔记:count

    在SQL中使用count()好像是非常自然的事情: SELECT COUNT(*) FROM TABLE_NAME; 有时候确实会想过,count(*)和单独的count(column_name)有什 ...