题目:http://codeforces.com/gym/101933/problem/K

每个点只要和父亲不同色就行。所以 “至多 i 种颜色” 的方案数就是 i * ( i-1 )n-1

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,mod=1e9+;
int n,k,g[N],c[N][N];
void upd(int &x){x>=mod?x-=mod:;}
int pw(int x,int k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;}
int main()
{
scanf("%d%d",&n,&k);
for(int i=,d;i<n;i++)scanf("%d",&d);
for(int i=;i<=n;i++)c[i][]=;
for(int i=;i<=k;i++)
for(int j=;j<=i;j++)c[i][j]=c[i-][j]+c[i-][j-],upd(c[i][j]);
for(int i=;i<=k;i++)g[i]=(ll)i*pw(i-,n-)%mod;
int ans=;
for(int i=,j=(k&?-:);i<=k;i++,j=-j)
ans=(ans+(ll)j*c[k][i]*g[i])%mod+mod,upd(ans);
printf("%d\n",ans);
return ;
}

CF gym101933 K King's Colors——二项式反演的更多相关文章

  1. CF gym 101933 K King's Colors —— 二项式反演

    题目:http://codeforces.com/gym/101933/problem/K 其实每个点的颜色只要和父亲不一样即可: 所以至多 i 种颜色就是 \( i * (i-1)^{n-1} \) ...

  2. CF gym 101933 K. King's Colors(二项式反演)

    传送门 解题思路 首先给出的树形态没用,因为除根结点外每个点只有一个父亲,它只需要保证和父亲颜色不同即可.设\(f(k)\)表示至多染了\(k\)种颜色的方案,那么\(f(k)=(k-1)^{(n-1 ...

  3. BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】

    题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...

  4. BZOJ 2839: 集合计数(二项式反演)

    传送门 解题思路 设\(f(k)\)为交集元素个数为\(k\)的方案数.发现我们并不能直接求出\(f(k)\),就考虑容斥之类的东西,容斥首先要扩大限制,再设\(g(k)\)表示至少有\(k\)个交集 ...

  5. NOI Online 游戏 树形dp 广义容斥/二项式反演

    LINK:游戏 还是过于弱鸡 没看出来是个二项式反演,虽然学过一遍 但印象不深刻. 二项式反演:有两种形式 一种是以恰好和至多的转换 一种是恰好和至少得转换. 设\(f_i\)表示至多的方案数 \(g ...

  6. CF Gym101933K King's Colors

    题目分析 题目要求在树上涂上恰好\(K\)种颜色的方案数. 设\(f(k)\)表示恰好涂上\(k\)种颜色的方案数(答案即为\(f(K)\)). 设\(g(k)\)表示至多涂上\(k\)种颜色的方案数 ...

  7. cf111D Petya and Coloring 组合数学,二项式反演

    http://codeforces.com/contest/111/problem/D Little Petya loves counting. He wants to count the numbe ...

  8. GYM 101933K(二项式反演、排列组合)

    方法一 设\(f_i\)为最多使用\(i\)种颜色的涂色方案,\(g_i\)为恰好只使用\(i\)种颜色的涂色方案.可知此题答案为\(g_k\). 根据排列组合的知识不难得到\(f_k = \sum_ ...

  9. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

随机推荐

  1. Vue学习笔记之Vue组件

    0x00 前言 vue的核心基础就是组件的使用,玩好了组件才能将前面学的基础更好的运用起来.组件的使用更使我们的项目解耦合.更加符合vue的设计思想MVVM. 那接下来就跟我看一下如何在一个Vue实例 ...

  2. Python3.x:open()文件操作

    Python3.x:open()文件操作 open/文件操作: #open(路径+文件名,读写模式) #读写模式:r只读,r+读写,w新建(会覆盖原有文件),a追加,b二进制文件.常用模式 f=ope ...

  3. Windows Server 2008 R2 web服务器发布在线系统时遇到的问题

    1  HTTP 错误 404.2 - Not Found,由于 Web  服务器上的“ISAPI 和 CGI 限制”列表设置,无法提供您请求的页面(如下图) 打开 Internet 信息服务(IIS) ...

  4. net.sf.json和 com.fasterxml.jackson中对象转json的区别

    近期做项目的时候,发现使用net.sf.json包中的JSONObject或JSONArray将对象转为json数据结构存在一个坑.当对String类型的属性赋值为null情况下,转为json结构为& ...

  5. POJ3278_Catch that cow

    一个简单的bfs题. 用结构体的目的在于保存bfs到达此处时走的步数. 不多言,上AC代码: //18:18 #include<iostream> #include<cstdio&g ...

  6. supervisor安装与问题

    [转]安装supervisor以及可能碰到的问题 单击此处查看原文 supervisor作为一个进程管理的python软件非常的给力 但是一不小心就会遇到一些问题 就比如下面这个: unix:///v ...

  7. POJ 1142 Smith Numbers(分治法+质因数分解)

    http://poj.org/problem?id=1142 题意: 给出一个数n,求大于n的最小数,它满足各位数相加等于该数分解质因数的各位相加. 思路:直接暴力. #include <ios ...

  8. shell 计时获取输入

    #!/bin/bash   if read -t 5 -p "please enter your name:" name   then       echo "hello ...

  9. postgresql中终止正在执行的SQL语句

    在Linux系统中可以使用kill [pid]的方式强制删除进程,但对于修改数据表的语句来说,这样可能导致postgresql进入recovery mode,这样会导致锁表. Postgresql的运 ...

  10. mysql--------命令来操作表

    常用的通过mysql命令来更改表结构的一些sql语句,包括添加.删除.修改字段.调整字段顺序. 添加字段: alter table `user_movement_log` Add column Gat ...