poj-1061-exgcd
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 128285 | Accepted: 27962 |
Description
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
Output
Sample Input
1 2 3 4 5
Sample Output
4
Source
#include<iostream>
#include<cstdio>
using namespace std;
#define LL long long
#define mp make_pair
#define pb push_back
#define inf 0x3f3f3f3f
void exgcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){d=a,x=,y=;}
else{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
int main(){
LL x,y,m,n,L;
while(cin>>x>>y>>m>>n>>L){
if(m<n){
swap(x,y);
swap(m,n);
}
LL a,b,d;
exgcd(m-n,L,d,a,b);
if((y-x)%d||m==n){
puts("Impossible");
continue;
}
printf("%lld\n",((a*(y-x)/d)%(L/d)+L/d)%(L/d));
}
return ;
}
poj-1061-exgcd的更多相关文章
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- 扩展欧几里德 POJ 1061
欧几里德的是来求最大公约数的,扩展欧几里德,基于欧几里德实现了一种扩展,是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理,证明是用裴蜀定 ...
- POJ.1061 青蛙的约会 (拓展欧几里得)
POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #inc ...
- AC日记——青蛙的约会 poj 1061
青蛙的约会 POJ - 1061 思路: 扩展欧几里得: 设青蛙们要跳k步,我们可以得出式子 m*k+a≡n*k+b(mod l) 式子变形得到 m*k+a-n*k-b=t*l (m-n)*k-t ...
- POJ 1061 青蛙的约会(扩展GCD求模线性方程)
题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...
- 数论问题(1) : poj 1061
最近,本人发现了一个新网站poj(不算新) 当然了,上面的资源很好...... 就是还没搞清楚它的搜索该怎么弄,如果有大佬能教教我怎么弄,请在下方留言 闲话少说,回归我们的正题 题目转自poj 106 ...
- 数学#扩展欧几里德 POJ 1061&2115&2891
寒假做的题了,先贴那时写的代码. POJ 1061 #include<iostream> #include<cstdio> typedef long long LL; usin ...
- poj 1061 青蛙的约会 (扩展欧几里得模板)
青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status ...
- POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]
先上干货: 定理1: 如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d. (参考exgcd:http://www.cnblogs.com/dilthey/p/68 ...
随机推荐
- Bytom矿池接入协议指南
矿机配置 https://gist.github.com/HAOYUatHZ/a47400bde4a138825faef415387b532c 固件升级 https://service.bitmain ...
- Wijmo 2017 V1发布
2017年Wijmo的第1个Release已经发布了!它充满了令人兴奋的新控件和新功能.一个新的TreeView控件:一个只有看到你才会相信的MultiAutoComplete控件:移动平台报表查看器 ...
- dRMT: Disaggregated Programmable Switching, SIGCOMM17
Reference: dRMT, SIGCOMM 2017 今年的SIGCOMM17会议上,Cisco System和MIT的团队针对RMT模型现有的问题,合作发表了这篇"dRMT: Dis ...
- Android四种布局方式
线性布局 <LinearLayout android:layout_width="match_parent" android:layout_height="wrap ...
- HDU 5445 Food Problem(多重背包+二进制优化)
http://acm.hdu.edu.cn/showproblem.php?pid=5445 题意:现在你要为运动会提供食物,总共需要提供P能量的食物,现在有n种食物,每种食物能提供 t 能量,体积为 ...
- Shell中的IFS
一.IFS 介绍 Shell 脚本中有个变量叫 IFS(Internal Field Seprator) ,内部域分隔符.完整定义是The shell uses the value stored in ...
- sql存储过程基本语法
一.定义变量 --简单赋值 declare @a int print @a --使用select语句赋值 declare @user1 nvarchar() select @user1='张三' pr ...
- Scrapy创建爬虫项目
1.打开cmd命令行工具,输入scrapy startproject 项目名称 2.使用pycharm打开项目,查看项目目录 3.创建爬虫,打开CMD,cd命令进入到爬虫项目文件夹,输入scrapy ...
- Oracel中的NVL函数
Oracle中函数以前介绍的字符串处理,日期函数,数学函数,以及转换函数等等,还有一类函数是通用函数.主要有:NVL,NVL2,NULLIF,COALESCE,这几个函数用在各个类型上都可以. 下面简 ...
- Qt5_当前exe所在路径
可以通过以下方式来获取: 1. #include <QDir>#include <QDebug> QDir dir; qDebug() << "curre ...