sklearn中的数据集的划分
sklearn数据集划分方法有如下方法:
KFold,GroupKFold,StratifiedKFold,LeaveOneGroupOut,LeavePGroupsOut,LeaveOneOut,LeavePOut,ShuffleSplit,GroupShuffleSplit,StratifiedShuffleSplit,PredefinedSplit,TimeSeriesSplit,
①数据集划分方法——K折交叉验证:KFold,GroupKFold,StratifiedKFold,
- 将全部训练集S分成k个不相交的子集,假设S中的训练样例个数为m,那么每一个自己有m/k个训练样例,相应的子集为{s1,s2,...,sk}
- 每次从分好的子集里面,拿出一个作为测试集,其他k-1个作为训练集
- 在k-1个训练集上训练出学习器模型
- 把这个模型放到测试集上,得到分类率的平均值,作为该模型或者假设函数的真实分类率
这个方法充分利用了所以样本,但计算比较繁琐,需要训练k次,测试k次
KFold:
import numpy as np
#KFold
from sklearn.model_selection import KFold
X=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
y=np.array([1,2,3,4,5,6])
kf=KFold(n_splits=2) #分成几个组
kf.get_n_splits(X)
print(kf)
for train_index,test_index in kf.split(X):
print("Train Index:",train_index,",Test Index:",test_index)
X_train,X_test=X[train_index],X[test_index]
y_train,y_test=y[train_index],y[test_index]
#print(X_train,X_test,y_train,y_test)
#KFold(n_splits=2, random_state=None, shuffle=False) #Train Index: [3 4 5] ,Test Index: [0 1 2] #Train Index: [0 1 2] ,Test Index: [3 4 5]
GroupKFold:
import numpy as np
from sklearn.model_selection import GroupKFold
X=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
y=np.array([1,2,3,4,5,6])
groups=np.array([1,2,3,4,5,6])
group_kfold=GroupKFold(n_splits=2)
group_kfold.get_n_splits(X,y,groups)
print(group_kfold)
for train_index,test_index in group_kfold.split(X,y,groups):
print("Train Index:",train_index,",Test Index:",test_index)
X_train,X_test=X[train_index],X[test_index]
y_train,y_test=y[train_index],y[test_index]
#print(X_train,X_test,y_train,y_test) #GroupKFold(n_splits=2)
#Train Index: [0 2 4] ,Test Index: [1 3 5]
#Train Index: [1 3 5] ,Test Index: [0 2 4]
StratifiedKFold:保证训练集中每一类的比例是相同的
import numpy as np
from sklearn.model_selection import StratifiedKFold
X=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
y=np.array([1,1,1,2,2,2])
skf=StratifiedKFold(n_splits=3)
skf.get_n_splits(X,y)
print(skf)
for train_index,test_index in skf.split(X,y):
print("Train Index:",train_index,",Test Index:",test_index)
X_train,X_test=X[train_index],X[test_index]
y_train,y_test=y[train_index],y[test_index]
#print(X_train,X_test,y_train,y_test) #StratifiedKFold(n_splits=3, random_state=None, shuffle=False)
#Train Index: [1 2 4 5] ,Test Index: [0 3]
#Train Index: [0 2 3 5] ,Test Index: [1 4]
#Train Index: [0 1 3 4] ,Test Index: [2 5]
②数据集划分方法——留一法:LeaveOneGroupOut,LeavePGroupsOut,LeaveOneOut,LeavePOut,
- 留一法验证(Leave-one-out,LOO):假设有N个样本,将每一个样本作为测试样本,其他N-1个样本作为训练样本,这样得到N个分类器,N个测试结果,用这N个结果的平均值来衡量模型的性能
- 如果LOO与K-fold CV比较,LOO在N个样本上建立N个模型而不是k个,更进一步,N个模型的每一个都是在N-1个样本上训练的,而不是(k-1)*n/k。两种方法中,假定k不是很大而且k<<N,LOO比k-fold CV更耗时
- 留P法验证(Leave-p-out):有N个样本,将每P个样本作为测试样本,其它N-P个样本作为训练样本,这样得到
个train-test pairs,不像LeaveOneOut和KFold,当P>1时,测试集将会发生重叠,当P=1的时候,就变成了留一法
leaveOneOut:测试集就留下一个
import numpy as np
from sklearn.model_selection import LeaveOneOut
X=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
y=np.array([1,2,3,4,5,6])
loo=LeaveOneOut()
loo.get_n_splits(X)
print(loo)
for train_index,test_index in loo.split(X,y):
print("Train Index:",train_index,",Test Index:",test_index)
X_train,X_test=X[train_index],X[test_index]
y_train,y_test=y[train_index],y[test_index]
#print(X_train,X_test,y_train,y_test)
#LeaveOneOut()
#Train Index: [1 2 3 4 5] ,Test Index: [0]
#Train Index: [0 2 3 4 5] ,Test Index: [1]
#Train Index: [0 1 3 4 5] ,Test Index: [2]
#Train Index: [0 1 2 4 5] ,Test Index: [3]
#Train Index: [0 1 2 3 5] ,Test Index: [4]
#Train Index: [0 1 2 3 4] ,Test Index: [5
LeavePOut:测试集留下P个
import numpy as np
from sklearn.model_selection import LeavePOut
X=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
y=np.array([1,2,3,4,5,6])
lpo=LeavePOut(p=3)
lpo.get_n_splits(X)
print(lpo)
for train_index,test_index in lpo.split(X,y):
print("Train Index:",train_index,",Test Index:",test_index)
X_train,X_test=X[train_index],X[test_index]
y_train,y_test=y[train_index],y[test_index]
#print(X_train,X_test,y_train,y_test) #LeavePOut(p=3)
#Train Index: [3 4 5] ,Test Index: [0 1 2]
#Train Index: [2 4 5] ,Test Index: [0 1 3]
#Train Index: [2 3 5] ,Test Index: [0 1 4]
#Train Index: [2 3 4] ,Test Index: [0 1 5]
#Train Index: [1 4 5] ,Test Index: [0 2 3]
#Train Index: [1 3 5] ,Test Index: [0 2 4]
#Train Index: [1 3 4] ,Test Index: [0 2 5]
#Train Index: [1 2 5] ,Test Index: [0 3 4]
#Train Index: [1 2 4] ,Test Index: [0 3 5]
#Train Index: [1 2 3] ,Test Index: [0 4 5]
#Train Index: [0 4 5] ,Test Index: [1 2 3]
#Train Index: [0 3 5] ,Test Index: [1 2 4]
#Train Index: [0 3 4] ,Test Index: [1 2 5]
#Train Index: [0 2 5] ,Test Index: [1 3 4]
#Train Index: [0 2 4] ,Test Index: [1 3 5]
#Train Index: [0 2 3] ,Test Index: [1 4 5]
#Train Index: [0 1 5] ,Test Index: [2 3 4]
#Train Index: [0 1 4] ,Test Index: [2 3 5]
#Train Index: [0 1 3] ,Test Index: [2 4 5]
#Train Index: [0 1 2] ,Test Index: [3 4 5]
③数据集划分方法——随机划分法:ShuffleSplit,GroupShuffleSplit,StratifiedShuffleSplit
- ShuffleSplit迭代器产生指定数量的独立的train/test数据集划分,首先对样本全体随机打乱,然后再划分出train/test对,可以使用随机数种子random_state来控制数字序列发生器使得讯算结果可重现
- ShuffleSplit是KFlod交叉验证的比较好的替代,他允许更好的控制迭代次数和train/test的样本比例
- StratifiedShuffleSplit和ShuffleSplit的一个变体,返回分层划分,也就是在创建划分的时候要保证每一个划分中类的样本比例与整体数据集中的原始比例保持一致
#ShuffleSplit 把数据集打乱顺序,然后划分测试集和训练集,训练集额和测试集的比例随机选定,训练集和测试集的比例的和可以小于1
import numpy as np
from sklearn.model_selection import ShuffleSplit
X=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
y=np.array([1,2,3,4,5,6])
rs=ShuffleSplit(n_splits=3,test_size=.25,random_state=0)
rs.get_n_splits(X)
print(rs)
for train_index,test_index in rs.split(X,y):
print("Train Index:",train_index,",Test Index:",test_index)
X_train,X_test=X[train_index],X[test_index]
y_train,y_test=y[train_index],y[test_index]
#print(X_train,X_test,y_train,y_test)
print("==============================")
rs=ShuffleSplit(n_splits=3,train_size=.5,test_size=.25,random_state=0)
rs.get_n_splits(X)
print(rs)
for train_index,test_index in rs.split(X,y):
print("Train Index:",train_index,",Test Index:",test_index) #ShuffleSplit(n_splits=3, random_state=0, test_size=0.25, train_size=None)
#Train Index: [1 3 0 4] ,Test Index: [5 2]
#Train Index: [4 0 2 5] ,Test Index: [1 3]
#Train Index: [1 2 4 0] ,Test Index: [3 5]
#==============================
#ShuffleSplit(n_splits=3, random_state=0, test_size=0.25, train_size=0.5)
#Train Index: [1 3 0] ,Test Index: [5 2]
#Train Index: [4 0 2] ,Test Index: [1 3]
#Train Index: [1 2 4] ,Test Index: [3 5]
#StratifiedShuffleSplitShuffleSplit 把数据集打乱顺序,然后划分测试集和训练集,训练集额和测试集的比例随机选定,训练集和测试集的比例的和可以小于1,但是还要保证训练集中各类所占的比例是一样的
import numpy as np
from sklearn.model_selection import StratifiedShuffleSplit
X=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]])
y=np.array([1,2,1,2,1,2])
sss=StratifiedShuffleSplit(n_splits=3,test_size=.5,random_state=0)
sss.get_n_splits(X,y)
print(sss)
for train_index,test_index in sss.split(X,y):
print("Train Index:",train_index,",Test Index:",test_index)
X_train,X_test=X[train_index],X[test_index]
y_train,y_test=y[train_index],y[test_index]
#print(X_train,X_test,y_train,y_test) #StratifiedShuffleSplit(n_splits=3, random_state=0, test_size=0.5,train_size=None)
#Train Index: [5 4 1] ,Test Index: [3 2 0]
#Train Index: [5 2 3] ,Test Index: [0 4 1]
#Train Index: [5 0 4] ,Test Index: [3 1 2]
sklearn中的数据集的划分的更多相关文章
- sklearn中,数据集划分函数 StratifiedShuffleSplit.split() 使用踩坑
在SKLearn中,StratifiedShuffleSplit 类实现了对数据集进行洗牌.分割的功能.但在今晚的实际使用中,发现该类及其方法split()仅能够对二分类样本有效. 一个简单的例子如下 ...
- 解决Sklearn中使用数据集MNIST无法获取的问题(WinError 10060)
今天在学习PCA的时候,使用mnist数据集遇到一个问题,代码是这样的: import numpy as np from sklearn.datasets import fetch_mldata mn ...
- 机器学习实战基础(十九):sklearn中数据集
sklearn提供的自带的数据集 sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在 ...
- sklearn 中的交叉验证
sklearn中的交叉验证(Cross-Validation) sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的 ...
- sklearn中的交叉验证(Cross-Validation)
这个repo 用来记录一些python技巧.书籍.学习链接等,欢迎stargithub地址sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sk ...
- 决策树在sklearn中的实现
1 概述 1.1 决策树是如何工作的 1.2 构建决策树 1.2.1 ID3算法构建决策树 1.2.2 简单实例 1.2.3 ID3的局限性 1.3 C4.5算法 & CART算法 1.3.1 ...
- Sklearn 中的 CrossValidation 交叉验证
1. 交叉验证概述 进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就需要模型验证这一过程来体现不同的模型对于未知数据的表现效果. 最先 ...
- sklearn中的数据预处理和特征工程
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...
- sklearn中的KMeans算法
1.聚类算法又叫做“无监督分类”,其目的是将数据划分成有意义或有用的组(或簇).这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布. 2.KMeans算法将一 ...
随机推荐
- AngularJS转换请求内容
在"AngularJS中转换响应内容"中,体验了如何转换响应内容.本篇来体验如何转换请求内容. 主页面通过onSend方法把request对象转递出去. <form name ...
- IIS服务命令
: iisreset /reboot 重启win2k计算机(但有提示系统将重启信息出现) iisreset /start或stop 启动(停止)所有Internet服务 iisreset /resta ...
- chrome 浏览器的插件权限有多大?
转自:https://segmentfault.com/q/1010000003777353 1)Chrome插件本身有机制控制,不会无限制的开放很多权限给你2)页面的DOM元素时可以操作的,Chro ...
- Android性能优化-减小APK大小
前言 用户通常会避免下载比较大的应用,特别是连接到2G和3G网络,或者按流量收费的设备.这篇文章描述了如何减小apk的大小,帮助你让更多的用户下载你的app. 一 理解APK的结构 在讨论如何减小ap ...
- wifipineapple执行dnsspoof
ssh连接到wifipineapple: 输入连接信息:ssh root@172.16.42.1 输入密码:pineapplesareyummy 安装依赖基本环境: opkg update opkg ...
- ARP协议具体解释之Gratuitous ARP(免费ARP)
ARP协议具体解释之Gratuitous ARP(免费ARP) Gratuitous ARP(免费ARP) Gratuitous ARP也称为免费ARP.无故ARP.Gratuitous ARP不同于 ...
- xcode 编译或者打包的时候 找不到图片的错误
进入app路径,copy一份图片进去就好了
- DxO FilmPack for Mac(胶片模拟效果软件)破解版安装
1.软件简介 DxO FilmPack 是 macOS 系统上由知名的 DxO Labs 出品的一套胶片模拟效果滤镜,拥有数十种电影风格的滤镜,今天和大家分享最新的版本,支持最新的 PhotoS ...
- 深入分析java线程池的实现原理(转载)
前言 线程是稀缺资源,如果被无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,合理的使用线程池对线程进行统一分配.调优和监控,有以下好处: 1.降低资源消耗: 2.提高响应速度: 3.提高线程的 ...
- jQuery Address全站 AJAX 完整案例详解
本文详细介绍如何利用 jQuery 框架以及 jQuery Address 插件实现最基本的全站 AJAX 动态加载页面内容的功能的方法. 案例目标 以常见基本结构的网站为案例,实现全站链接 AJAX ...