https://medium.com/towards-data-science/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9

https://stackoverflow.com/questions/20027598/why-should-weights-of-neural-networks-be-initialized-to-random-numbers/40525812?noredirect=1#comment80759413_40525812

https://www.quora.com/If-one-initializes-a-set-of-weights-in-a-Neural-Network-to-zero-is-it-true-that-in-future-iterations-they-will-not-be-updated-by-gradient-descent-and-backpropagation

111

【直观详解】什么是正则化

https://charlesliuyx.github.io/2017/10/03/%E3%80%90%E7%9B%B4%E8%A7%82%E8%AF%A6%E8%A7%A3%E3%80%91%E4%BB%80%E4%B9%88%E6%98%AF%E6%AD%A3%E5%88%99%E5%8C%96/

李宏毅 / 一天搞懂深度學習

https://www.slideshare.net/tw_dsconf/ss-62245351?qid=108adce3-2c3d-4758-a830-95d0a57e46bc&v=&b=&from_search=3

gradient descent

http://www.deeplearningbook.org/contents/numerical.html

http://cs231n.github.io/neural-networks-3/

https://arxiv.org/pdf/1609.04747.pdf

http://www.deeplearningbook.org/contents/optimization.html

https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-variants/

https://www.quora.com/Is-a-single-layered-ReLu-network-still-a-universal-approximator/answer/Conner-Davis-2

https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/

https://www.analyticsvidhya.com/blog/2017/05/25-must-know-terms-concepts-for-beginners-in-deep-learning/

softmax

https://www.quora.com/What-is-the-intuition-behind-SoftMax-function/answer/Sebastian-Raschka-1

https://blog.manash.me/implementing-l2-constrained-softmax-loss-function-on-a-convolutional-neural-network-using-1bb7c0aab7b1

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

https://www.quora.com/What-is-the-role-of-the-activation-function-in-a-neural-network-How-does-this-function-in-a-human-neural-network-system

Important

http://www.cs.toronto.edu/~fleet/courses/cifarSchool09/slidesBengio.pdf

https://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf

https://medium.com/@vivek.yadav/how-neural-networks-learn-nonlinear-functions-and-classify-linearly-non-separable-data-22328e7e5be1

如何通俗易懂地解释卷积?

https://www.zhihu.com/question/22298352?rf=21686447

卷积神经网络工作原理直观的解释?

https://www.zhihu.com/question/39022858

https://mlnotebook.github.io/post/

https://zhuanlan.zhihu.com/p/28478034

http://timdettmers.com/2015/03/26/convolution-deep-learning/

https://stats.stackexchange.com/questions/116362/what-does-the-convolution-step-in-a-convolutional-neural-network-do

https://www.quora.com/Why-does-deep-learning-architectures-only-use-the-non-linear-activation-function-in-the-hidden-layers

https://www.quora.com/Is-a-single-layered-ReLu-network-still-a-universal-approximator/answer/Conner-Davis-2

https://www.quora.com/Is-ReLU-a-linear-piece-wise-linear-or-non-linear-activation-function

=========

transfer learning

https://www.quora.com/Why-is-deep-learning-so-easy

===============

https://www.quora.com/How-can-I-learn-Deep-Learning-quickly

What is a simple explanation of how artificial neural networks work?

How can I learn Deep Learning quickly?

https://www.quora.com/How-can-I-learn-Deep-Learning-quickly

https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw

https://www.quora.com/Why-do-neural-networks-need-more-than-one-hidden-layer

bengioy

https://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf

https://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf

http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/

http://www.cs.toronto.edu/~fleet/courses/cifarSchool09/slidesBengio.pdf

https://stats.stackexchange.com/questions/182734/what-is-the-difference-between-a-neural-network-and-a-deep-neural-network?rq=1

Universal Approximation Theorem

https://pdfs.semanticscholar.org/f22f/6972e66bdd2e769fa64b0df0a13063c0c101.pdf

http://www.cs.cmu.edu/~epxing/Class/10715/reading/Kornick_et_al.pdf

「Deep Learning」读书系列分享第四章:数值计算 | 分享总结

Nonlinear Classifiers

https://www.quora.com/In-deep-learning-can-good-results-be-obtained-when-you-use-a-linear-function-in-between-the-hidden-layers

https://www.quora.com/Why-do-neural-networks-need-an-activation-function

https://stackoverflow.com/questions/9782071/why-must-a-nonlinear-activation-function-be-used-in-a-backpropagation-neural-net

http://ai.stanford.edu/~quocle/tutorial1.pdf

http://cs231n.github.io/neural-networks-1/

https://www.quora.com/Why-does-deep-learning-architectures-only-use-the-non-linear-activation-function-in-the-hidden-layers

https://medium.com/@vivek.yadav/how-neural-networks-learn-nonlinear-functions-and-classify-linearly-non-separable-data-22328e7e5be1

https://www.quora.com/What-is-the-ability-of-a-single-neuron-with-a-non-linear-activation-function-Can-it-only-classify-the-input-space-in-two-classes

NN,CNN

https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/

https://www.analyticsvidhya.com/blog/2017/06/architecture-of-convolutional-neural-networks-simplified-demystified/

[CV] 通俗理解『卷积』——从傅里叶变换到滤波器

https://zhuanlan.zhihu.com/p/28478034

如何通俗易懂地解释卷积?

https://www.zhihu.com/question/22298352?rf=21686447

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://mlnotebook.github.io/post/CNN1/

http://bamos.github.io/2016/08/09/deep-completion/

https://www.analyticsvidhya.com/blog/2016/04/deep-learning-computer-vision-introduction-convolution-neural-networks/

https://www.analyticsvidhya.com/blog/2016/03/introduction-deep-learning-fundamentals-neural-networks/

https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-learning/

Applied Deep Learning - Part 1: Artificial Neural Networks

https://medium.com/towards-data-science/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6

Papaer

dropout ----Hinton

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Neural Network with Unbounded Activation Functions is Universal Approximator

https://arxiv.org/pdf/1505.03654.pdf

Transfer Learning

Paper by Yoshua Bengio (another deep learning pioneer).
Paper by Ali Sharif Razavian.
Paper by Jeff Donahue.
Paper and subsequent paper by Dario Garcia-Gasulla.

overfitting

https://medium.com/towards-data-science/deep-learning-overfitting-846bf5b35e24

名校课程

cs231

http://www.jianshu.com/p/182baeb82c71

https://www.coursera.org/learn/neural-networks

收费视频

https://www.udemy.com/deeplearning/?siteID=mDjthAvMbf0-ZE2EvHFczLauDLzv0OQAKg&LSNPUBID=mDjthAvMbf0

Paper

The Power of Depth for Feedforward Neural Networks

https://arxiv.org/pdf/1512.03965.pdf?platform=hootsuite

Deep Residual Learning for Image Recognition

https://arxiv.org/pdf/1512.03385v1.pdf

Speed/accuracy trade-offs for modern convolutional object detectors

https://arxiv.org/pdf/1611.10012.pdf

Playing Atari with Deep Reinforcement Learning

https://arxiv.org/pdf/1312.5602v1.pdf

Neural Network with Unbounded Activation Functions is Universal Approximator

https://arxiv.org/pdf/1505.03654.pdf

Transfer learning

https://databricks.com/blog/2017/06/06/databricks-vision-simplify-large-scale-deep-learning.html

TensorFlow Object Detection API

https://github.com/tensorflow/models/tree/477ed41e7e4e8a8443bc633846eb01e2182dc68a/object_detection

https://opensource.googleblog.com/2017/06/supercharge-your-computer-vision-models.html

Supercharge your Computer Vision models with the TensorFlow Object Detection API

https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html

如何使用TensorFlow API构建视频物体识别系统

https://www.jiqizhixin.com/articles/2017-07-14-5

谷歌开放的TensorFlow Object Detection API 效果如何?对业界有什么影响?

https://www.zhihu.com/question/61173908

https://stackoverflow.com/questions/42364513/how-to-recognise-multiple-objects-in-the-same-image

利用TensorFlow Object Detection API 训练自己的数据集

https://zhuanlan.zhihu.com/p/27469690

谷歌开放的TensorFlow Object Detection API 效果如何?对业界有什么影响?

https://github.com/tensorflow/models/tree/master/research/object_detection/data

https://medium.com/towards-data-science/building-a-toy-detector-with-tensorflow-object-detection-api-63c0fdf2ac95

https://medium.com/towards-data-science/building-a-real-time-object-recognition-app-with-tensorflow-and-opencv-b7a2b4ebdc32

https://medium.com/towards-data-science/how-to-train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9

https://stackoverflow.com/questions/44973184/train-tensorflow-object-detection-on-own-dataset

https://cloud.google.com/blog/big-data/2017/06/training-an-object-detector-using-cloud-machine-learning-engine

https://medium.com/ilenze-com/object-detection-using-deep-learning-for-advanced-users-part-1-183bbbb08b19

脑科学

https://www.quora.com/What-are-the-parts-of-the-neuron-and-their-function

why deep learning works的更多相关文章

  1. Why Deep Learning Works – Key Insights and Saddle Points

    Why Deep Learning Works – Key Insights and Saddle Points A quality discussion on the theoretical mot ...

  2. Decision Boundaries for Deep Learning and other Machine Learning classifiers

    Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading ...

  3. Growing Pains for Deep Learning

    Growing Pains for Deep Learning Advances in theory and computer hardware have allowed neural network ...

  4. Why deep learning?

    1. 深度学习中网络越深越好么? 理论上说是这样的,因为网络越深,参数也越多,拟合能力也越强(但实际情况是,网络很深的时候,不容易训练,使得表现能力可能并不好). 2. 那么,不同什么深度的网络,在参 ...

  5. Use of Deep Learning in Modern Recommendation System: A Summary of Recent Works(笔记)

    注意:论文中,很多的地方出现baseline,可以理解为参照物的意思,但是在论文中,我们还是直接将它称之为基线,也 就是对照物,参照物. 这片论文中,作者没有去做实际的实验,但是却做了一件很有意义的事 ...

  6. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

  7. (转) Deep Learning Research Review Week 2: Reinforcement Learning

      Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...

  8. deep learning 的综述

    从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...

  9. Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记

    前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE > ...

随机推荐

  1. shell下获取系统时间

    shell下获取系统时间的方法直接调用系统变量 获取今天时期:`date +%Y%m%d` 或 `date +%F` 或 $(date +%y%m%d) 获取昨天时期:`date -d yesterd ...

  2. JS 实现打印

    <input id="btnPrint" type="button" value="打印预览" onclick=preview(1) ...

  3. skatebroads

    skateboardsn.滑板( skateboard的名词复数 ) == skateboard英 [ˈskeɪtbɔ:d]  . 斯给特博得. 美 [ˈskeɪtbɔ:rd] n.滑板复数: ska ...

  4. pip安装django失败

    pip install django时提示 Cannot fetch index base URL https://mirrors.tuna.tsinghua.edu.cn/pypi/simple/, ...

  5. Java基础-对象的内存分配与初始化(一定要明白的干货)

    首先,什么是类的加载?类的加载由类加载器执行.该步骤将查找字节码(classpath指定目录),并从这些字节码中创建一个Class对象.Java虚拟机为每种类型管理一个独一无二的Class对象.也就是 ...

  6. Python直接控制鼠标键盘

    Python直接控制鼠标键盘 之前因为期末的原因已经很久没写博客了,今天博主发现一个好玩的模块PyAutoGUI,借助它可以使用Python脚本直接控制键盘鼠标,感觉可以解决很多无聊的机械运动.这里记 ...

  7. JAVA中使用LOG4J记录日志(转)

    在项目开发中,记录错误日志是一个很有必要功能.一是方便调试:二是便于发现系统运行过程中的错误:三是存储业务数据,便于后期分析: 在java中,记录日志,有很多种方式. 比如,自己实现. 自己写类,将日 ...

  8. C语言中字符输入问题

    先上例题,一道太水太水的题, http://acm.hdu.edu.cn/showproblem.php?pid=1170 让做一个简单的计算器.然而入坑了. #include<stdio.h& ...

  9. 何谓sdk,何谓api

    狭义上的 SDK 指 Windows SDK,包括在 Windows 平台进行开发的一系列头文件和库文件以及命令行工具等. API 是 SDK 提供给用户的函数,即接口就是这个 SDK 提供给你用于应 ...

  10. tfs2015 生成与发布 配置

    先来看一张微软官方的自动生成与发布架构图,以便了解很多概念间的关系 1.安装好TFS2015(可以参考TFS2010的安装过程,尤其是账号权限相关),我自己是从TFS2010一路升级上来的(TFS20 ...