https://medium.com/towards-data-science/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9

https://stackoverflow.com/questions/20027598/why-should-weights-of-neural-networks-be-initialized-to-random-numbers/40525812?noredirect=1#comment80759413_40525812

https://www.quora.com/If-one-initializes-a-set-of-weights-in-a-Neural-Network-to-zero-is-it-true-that-in-future-iterations-they-will-not-be-updated-by-gradient-descent-and-backpropagation

111

【直观详解】什么是正则化

https://charlesliuyx.github.io/2017/10/03/%E3%80%90%E7%9B%B4%E8%A7%82%E8%AF%A6%E8%A7%A3%E3%80%91%E4%BB%80%E4%B9%88%E6%98%AF%E6%AD%A3%E5%88%99%E5%8C%96/

李宏毅 / 一天搞懂深度學習

https://www.slideshare.net/tw_dsconf/ss-62245351?qid=108adce3-2c3d-4758-a830-95d0a57e46bc&v=&b=&from_search=3

gradient descent

http://www.deeplearningbook.org/contents/numerical.html

http://cs231n.github.io/neural-networks-3/

https://arxiv.org/pdf/1609.04747.pdf

http://www.deeplearningbook.org/contents/optimization.html

https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-variants/

https://www.quora.com/Is-a-single-layered-ReLu-network-still-a-universal-approximator/answer/Conner-Davis-2

https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/

https://www.analyticsvidhya.com/blog/2017/05/25-must-know-terms-concepts-for-beginners-in-deep-learning/

softmax

https://www.quora.com/What-is-the-intuition-behind-SoftMax-function/answer/Sebastian-Raschka-1

https://blog.manash.me/implementing-l2-constrained-softmax-loss-function-on-a-convolutional-neural-network-using-1bb7c0aab7b1

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

https://www.quora.com/What-is-the-role-of-the-activation-function-in-a-neural-network-How-does-this-function-in-a-human-neural-network-system

Important

http://www.cs.toronto.edu/~fleet/courses/cifarSchool09/slidesBengio.pdf

https://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf

https://medium.com/@vivek.yadav/how-neural-networks-learn-nonlinear-functions-and-classify-linearly-non-separable-data-22328e7e5be1

如何通俗易懂地解释卷积?

https://www.zhihu.com/question/22298352?rf=21686447

卷积神经网络工作原理直观的解释?

https://www.zhihu.com/question/39022858

https://mlnotebook.github.io/post/

https://zhuanlan.zhihu.com/p/28478034

http://timdettmers.com/2015/03/26/convolution-deep-learning/

https://stats.stackexchange.com/questions/116362/what-does-the-convolution-step-in-a-convolutional-neural-network-do

https://www.quora.com/Why-does-deep-learning-architectures-only-use-the-non-linear-activation-function-in-the-hidden-layers

https://www.quora.com/Is-a-single-layered-ReLu-network-still-a-universal-approximator/answer/Conner-Davis-2

https://www.quora.com/Is-ReLU-a-linear-piece-wise-linear-or-non-linear-activation-function

=========

transfer learning

https://www.quora.com/Why-is-deep-learning-so-easy

===============

https://www.quora.com/How-can-I-learn-Deep-Learning-quickly

What is a simple explanation of how artificial neural networks work?

How can I learn Deep Learning quickly?

https://www.quora.com/How-can-I-learn-Deep-Learning-quickly

https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw

https://www.quora.com/Why-do-neural-networks-need-more-than-one-hidden-layer

bengioy

https://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf

https://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf

http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/

http://www.cs.toronto.edu/~fleet/courses/cifarSchool09/slidesBengio.pdf

https://stats.stackexchange.com/questions/182734/what-is-the-difference-between-a-neural-network-and-a-deep-neural-network?rq=1

Universal Approximation Theorem

https://pdfs.semanticscholar.org/f22f/6972e66bdd2e769fa64b0df0a13063c0c101.pdf

http://www.cs.cmu.edu/~epxing/Class/10715/reading/Kornick_et_al.pdf

「Deep Learning」读书系列分享第四章:数值计算 | 分享总结

Nonlinear Classifiers

https://www.quora.com/In-deep-learning-can-good-results-be-obtained-when-you-use-a-linear-function-in-between-the-hidden-layers

https://www.quora.com/Why-do-neural-networks-need-an-activation-function

https://stackoverflow.com/questions/9782071/why-must-a-nonlinear-activation-function-be-used-in-a-backpropagation-neural-net

http://ai.stanford.edu/~quocle/tutorial1.pdf

http://cs231n.github.io/neural-networks-1/

https://www.quora.com/Why-does-deep-learning-architectures-only-use-the-non-linear-activation-function-in-the-hidden-layers

https://medium.com/@vivek.yadav/how-neural-networks-learn-nonlinear-functions-and-classify-linearly-non-separable-data-22328e7e5be1

https://www.quora.com/What-is-the-ability-of-a-single-neuron-with-a-non-linear-activation-function-Can-it-only-classify-the-input-space-in-two-classes

NN,CNN

https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/

https://www.analyticsvidhya.com/blog/2017/06/architecture-of-convolutional-neural-networks-simplified-demystified/

[CV] 通俗理解『卷积』——从傅里叶变换到滤波器

https://zhuanlan.zhihu.com/p/28478034

如何通俗易懂地解释卷积?

https://www.zhihu.com/question/22298352?rf=21686447

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://mlnotebook.github.io/post/CNN1/

http://bamos.github.io/2016/08/09/deep-completion/

https://www.analyticsvidhya.com/blog/2016/04/deep-learning-computer-vision-introduction-convolution-neural-networks/

https://www.analyticsvidhya.com/blog/2016/03/introduction-deep-learning-fundamentals-neural-networks/

https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-learning/

Applied Deep Learning - Part 1: Artificial Neural Networks

https://medium.com/towards-data-science/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6

Papaer

dropout ----Hinton

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Neural Network with Unbounded Activation Functions is Universal Approximator

https://arxiv.org/pdf/1505.03654.pdf

Transfer Learning

Paper by Yoshua Bengio (another deep learning pioneer).
Paper by Ali Sharif Razavian.
Paper by Jeff Donahue.
Paper and subsequent paper by Dario Garcia-Gasulla.

overfitting

https://medium.com/towards-data-science/deep-learning-overfitting-846bf5b35e24

名校课程

cs231

http://www.jianshu.com/p/182baeb82c71

https://www.coursera.org/learn/neural-networks

收费视频

https://www.udemy.com/deeplearning/?siteID=mDjthAvMbf0-ZE2EvHFczLauDLzv0OQAKg&LSNPUBID=mDjthAvMbf0

Paper

The Power of Depth for Feedforward Neural Networks

https://arxiv.org/pdf/1512.03965.pdf?platform=hootsuite

Deep Residual Learning for Image Recognition

https://arxiv.org/pdf/1512.03385v1.pdf

Speed/accuracy trade-offs for modern convolutional object detectors

https://arxiv.org/pdf/1611.10012.pdf

Playing Atari with Deep Reinforcement Learning

https://arxiv.org/pdf/1312.5602v1.pdf

Neural Network with Unbounded Activation Functions is Universal Approximator

https://arxiv.org/pdf/1505.03654.pdf

Transfer learning

https://databricks.com/blog/2017/06/06/databricks-vision-simplify-large-scale-deep-learning.html

TensorFlow Object Detection API

https://github.com/tensorflow/models/tree/477ed41e7e4e8a8443bc633846eb01e2182dc68a/object_detection

https://opensource.googleblog.com/2017/06/supercharge-your-computer-vision-models.html

Supercharge your Computer Vision models with the TensorFlow Object Detection API

https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html

如何使用TensorFlow API构建视频物体识别系统

https://www.jiqizhixin.com/articles/2017-07-14-5

谷歌开放的TensorFlow Object Detection API 效果如何?对业界有什么影响?

https://www.zhihu.com/question/61173908

https://stackoverflow.com/questions/42364513/how-to-recognise-multiple-objects-in-the-same-image

利用TensorFlow Object Detection API 训练自己的数据集

https://zhuanlan.zhihu.com/p/27469690

谷歌开放的TensorFlow Object Detection API 效果如何?对业界有什么影响?

https://github.com/tensorflow/models/tree/master/research/object_detection/data

https://medium.com/towards-data-science/building-a-toy-detector-with-tensorflow-object-detection-api-63c0fdf2ac95

https://medium.com/towards-data-science/building-a-real-time-object-recognition-app-with-tensorflow-and-opencv-b7a2b4ebdc32

https://medium.com/towards-data-science/how-to-train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9

https://stackoverflow.com/questions/44973184/train-tensorflow-object-detection-on-own-dataset

https://cloud.google.com/blog/big-data/2017/06/training-an-object-detector-using-cloud-machine-learning-engine

https://medium.com/ilenze-com/object-detection-using-deep-learning-for-advanced-users-part-1-183bbbb08b19

脑科学

https://www.quora.com/What-are-the-parts-of-the-neuron-and-their-function

why deep learning works的更多相关文章

  1. Why Deep Learning Works – Key Insights and Saddle Points

    Why Deep Learning Works – Key Insights and Saddle Points A quality discussion on the theoretical mot ...

  2. Decision Boundaries for Deep Learning and other Machine Learning classifiers

    Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading ...

  3. Growing Pains for Deep Learning

    Growing Pains for Deep Learning Advances in theory and computer hardware have allowed neural network ...

  4. Why deep learning?

    1. 深度学习中网络越深越好么? 理论上说是这样的,因为网络越深,参数也越多,拟合能力也越强(但实际情况是,网络很深的时候,不容易训练,使得表现能力可能并不好). 2. 那么,不同什么深度的网络,在参 ...

  5. Use of Deep Learning in Modern Recommendation System: A Summary of Recent Works(笔记)

    注意:论文中,很多的地方出现baseline,可以理解为参照物的意思,但是在论文中,我们还是直接将它称之为基线,也 就是对照物,参照物. 这片论文中,作者没有去做实际的实验,但是却做了一件很有意义的事 ...

  6. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

  7. (转) Deep Learning Research Review Week 2: Reinforcement Learning

      Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...

  8. deep learning 的综述

    从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...

  9. Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记

    前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE > ...

随机推荐

  1. spring security入门demo

    一.前言 因项目需要引入spring security权限框架,而之前也没接触过这个一门,于是就花了点时间弄了个小demo出来,说实话,刚开始接触这个确实有点懵,看网上资料写的权限大都是静态,即就是在 ...

  2. Left join on where 区别

    on 后面 直接加条件的话,不会对左边的表产生影响,on条件是在左关联时候的条件,不管如何都会返回左边表中的记录 where 加条件 才会对左边的表 生效.where条件是关联查询之后的条件

  3. c# 获取键盘的输入

    c# 获取键盘的输入   Console 类公开了三个方法获取键盘的输入,分别是Read .Readkey.ReadLine Read方法: 每次只能读入一个字符,如果没有字符可以读,返回-1,Rea ...

  4. BZOJ1290 : [Ctsc2009]序列变换

    设$f[i][j]$表示$a[i]$改成$j$时的最小总代价. 若$a[i]<A(i-1)+1$,则不妨将其强行改成$A(i-1)+1$,如此处理之后$\min(f[n][1..Q])$就是答案 ...

  5. NOIP考试各种技巧!!

    考前时间利用对考生起着至关重要的作用,不容忽视! 一.考前几分钟时间,往往能决定成败,所以一定要做好心态调整.不要去想结果,只看过程,努力了就一定不会白费.二.在别人紧张.坐立不安的时候,你不妨把时间 ...

  6. Little Pony and Alohomora Part 3 [HihoCoder 1075]

    描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...

  7. Ruby语法基础(三)

    Ruby语法基础(三) ​ 在前面快速入之后,这次加深对基本概念的理解. 字符串 ​ Ruby字符串可以分为单引号字符串和双引号字符串,单引号字符串效率更高,但双引号的支持转义和运行 puts '单引 ...

  8. 深入理解JVM(4)——对象内存的分配策略

    一.Java所承担的自动内存管理主要是针对对象内存的分配和回收. 二.在Java虚拟机的五块内存空间中,程序计数器.Java虚拟机栈.本地方法栈内存的分配和回收都具有确定性,一般在编译阶段就能确定需要 ...

  9. 小甲鱼Python第八讲课后习题

    0. 下面的循环会打印多少次"I Love FishC"?

  10. javascript 时间

    var getDate = new Date(); console.log(getDate.getDate()) console.log(getDate.getDay()) console.log(g ...