why deep learning works
111
【直观详解】什么是正则化
李宏毅 / 一天搞懂深度學習
gradient descent
http://www.deeplearningbook.org/contents/numerical.html
http://cs231n.github.io/neural-networks-3/
https://arxiv.org/pdf/1609.04747.pdf
http://www.deeplearningbook.org/contents/optimization.html
https://www.quora.com/Is-a-single-layered-ReLu-network-still-a-universal-approximator/answer/Conner-Davis-2
https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/
softmax
https://www.quora.com/What-is-the-intuition-behind-SoftMax-function/answer/Sebastian-Raschka-1
https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
https://www.quora.com/What-is-the-role-of-the-activation-function-in-a-neural-network-How-does-this-function-in-a-human-neural-network-system
Important
http://www.cs.toronto.edu/~fleet/courses/cifarSchool09/slidesBengio.pdf
https://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
https://medium.com/@vivek.yadav/how-neural-networks-learn-nonlinear-functions-and-classify-linearly-non-separable-data-22328e7e5be1
如何通俗易懂地解释卷积?
https://www.zhihu.com/question/22298352?rf=21686447
卷积神经网络工作原理直观的解释?
https://www.zhihu.com/question/39022858
https://mlnotebook.github.io/post/
https://zhuanlan.zhihu.com/p/28478034
http://timdettmers.com/2015/03/26/convolution-deep-learning/
https://www.quora.com/Is-ReLU-a-linear-piece-wise-linear-or-non-linear-activation-function
=========
transfer learning
https://www.quora.com/Why-is-deep-learning-so-easy
===============
https://www.quora.com/How-can-I-learn-Deep-Learning-quickly
What is a simple explanation of how artificial neural networks work?
How can I learn Deep Learning quickly?
https://www.quora.com/How-can-I-learn-Deep-Learning-quickly
https://www.quora.com/Why-do-neural-networks-need-more-than-one-hidden-layer
bengioy
https://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
https://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf
http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/
http://www.cs.toronto.edu/~fleet/courses/cifarSchool09/slidesBengio.pdf
Universal Approximation Theorem
https://pdfs.semanticscholar.org/f22f/6972e66bdd2e769fa64b0df0a13063c0c101.pdf
http://www.cs.cmu.edu/~epxing/Class/10715/reading/Kornick_et_al.pdf
「Deep Learning」读书系列分享第四章:数值计算 | 分享总结
Nonlinear Classifiers
https://www.quora.com/Why-do-neural-networks-need-an-activation-function
http://ai.stanford.edu/~quocle/tutorial1.pdf
http://cs231n.github.io/neural-networks-1/
NN,CNN
https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/
[CV] 通俗理解『卷积』——从傅里叶变换到滤波器
https://zhuanlan.zhihu.com/p/28478034
如何通俗易懂地解释卷积?
https://www.zhihu.com/question/22298352?rf=21686447
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://mlnotebook.github.io/post/CNN1/
http://bamos.github.io/2016/08/09/deep-completion/
https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-learning/
Applied Deep Learning - Part 1: Artificial Neural Networks
Papaer
dropout ----Hinton
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
Neural Network with Unbounded Activation Functions is Universal Approximator
https://arxiv.org/pdf/1505.03654.pdf
Transfer Learning
Paper by Yoshua Bengio (another deep learning pioneer).
Paper by Ali Sharif Razavian.
Paper by Jeff Donahue.
Paper and subsequent paper by Dario Garcia-Gasulla.
overfitting
https://medium.com/towards-data-science/deep-learning-overfitting-846bf5b35e24
名校课程
cs231
http://www.jianshu.com/p/182baeb82c71
https://www.coursera.org/learn/neural-networks
收费视频
https://www.udemy.com/deeplearning/?siteID=mDjthAvMbf0-ZE2EvHFczLauDLzv0OQAKg&LSNPUBID=mDjthAvMbf0
Paper
The Power of Depth for Feedforward Neural Networks
https://arxiv.org/pdf/1512.03965.pdf?platform=hootsuite
Deep Residual Learning for Image Recognition
https://arxiv.org/pdf/1512.03385v1.pdf
Speed/accuracy trade-offs for modern convolutional object detectors
https://arxiv.org/pdf/1611.10012.pdf
Playing Atari with Deep Reinforcement Learning
https://arxiv.org/pdf/1312.5602v1.pdf
Neural Network with Unbounded Activation Functions is Universal Approximator
https://arxiv.org/pdf/1505.03654.pdf
Transfer learning
https://databricks.com/blog/2017/06/06/databricks-vision-simplify-large-scale-deep-learning.html
TensorFlow Object Detection API
https://github.com/tensorflow/models/tree/477ed41e7e4e8a8443bc633846eb01e2182dc68a/object_detection
https://opensource.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
Supercharge your Computer Vision models with the TensorFlow Object Detection API
https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
如何使用TensorFlow API构建视频物体识别系统
https://www.jiqizhixin.com/articles/2017-07-14-5
谷歌开放的TensorFlow Object Detection API 效果如何?对业界有什么影响?
https://www.zhihu.com/question/61173908
https://stackoverflow.com/questions/42364513/how-to-recognise-multiple-objects-in-the-same-image
利用TensorFlow Object Detection API 训练自己的数据集
https://zhuanlan.zhihu.com/p/27469690
谷歌开放的TensorFlow Object Detection API 效果如何?对业界有什么影响?
https://github.com/tensorflow/models/tree/master/research/object_detection/data
https://stackoverflow.com/questions/44973184/train-tensorflow-object-detection-on-own-dataset
脑科学
https://www.quora.com/What-are-the-parts-of-the-neuron-and-their-function
why deep learning works的更多相关文章
- Why Deep Learning Works – Key Insights and Saddle Points
		Why Deep Learning Works – Key Insights and Saddle Points A quality discussion on the theoretical mot ... 
- Decision Boundaries for Deep Learning and other Machine Learning classifiers
		Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading ... 
- Growing Pains for Deep Learning
		Growing Pains for Deep Learning Advances in theory and computer hardware have allowed neural network ... 
- Why deep learning?
		1. 深度学习中网络越深越好么? 理论上说是这样的,因为网络越深,参数也越多,拟合能力也越强(但实际情况是,网络很深的时候,不容易训练,使得表现能力可能并不好). 2. 那么,不同什么深度的网络,在参 ... 
- Use of Deep Learning in Modern Recommendation System: A Summary of Recent Works(笔记)
		注意:论文中,很多的地方出现baseline,可以理解为参照物的意思,但是在论文中,我们还是直接将它称之为基线,也 就是对照物,参照物. 这片论文中,作者没有去做实际的实验,但是却做了一件很有意义的事 ... 
- (转) The major advancements in Deep Learning in 2016
		The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ... 
- (转) Deep Learning Research Review Week 2: Reinforcement Learning
		Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ... 
- deep learning 的综述
		从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ... 
- Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记
		前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE > ... 
随机推荐
- 【可靠性】Mysql 5.7 降低了半同步复制-数据丢失的风险
			如果你的生产线开启了半同步复制,那么对数据的一致性会要求较高,但在MySQL5.5/5.6里,会存在数据不一致的风险.有这么一个场景,客户端提交了一个事务,master把binlog发送给slave, ... 
- IIS 注册 ASP.NET 2.0 4.0
			在CMD窗体,运行如下命令: 2.0:C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\aspnet_regiis.exe -i 4.0:C:\WINDOWS ... 
- 移动端小坑:用户长按H5文字出现复制
			禁止复制方法:*{ -webkit-user-select: none;/*禁用手机浏览器的用户选择功能 */ -moz-user-select: none; -webkit-touch-callou ... 
- 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)
			题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ... 
- 2017-9-8-Linux下VNC server开启&图形界面显示
			之前有一个写树莓派3B怎么只使用网线VNC远程的blog,里面写的比较粗糙(其实是很长时间没搞我也忘了怎么装的了,照着原来的看一遍应该能想起来),所以重新来在新的环境下搭建一下VNC server. ... 
- Linq.js表达式常见写法
			1.回调函数法 2.lambda表达式字符串 3.$符号的表达式 
- python系统编程(十)
			多线程-非共享数据 对于全局变量,在多线程中要格外小心,否则容易造成数据错乱的情况发生 1. 非全局变量是否要加锁呢? #coding=utf-8 import threading import ti ... 
- IDEA的安装
			https://blog.csdn.net/when_to_return/article/details/81590356 
- BeanPostProcessor出现init方法无法被调用Invocation of init method failed
			是因为 返回了null,要返回object即可,arg0是bean对象本身,arg1是bean名字,即bean的id 
- 安装并运行Hello World
			新建虚拟环境并安装Flask pip install Flask 运行HelloWorld from flask import Flask #导入Flask类 app = Flask(__name__ ... 
