倍增算法总结 ( 含RMQ模板)
部分题目来自《算法竞赛设计进阶》
问题
给定一个长度为n的数列A,有m个询问,每次给定一个整数T,求出最大的k,满足a[1],a[2]……a[k]的和小于等于T(不会打sigma)
第一反应是二分,这个时候的复杂度是logn
还有第二种解法,用倍增的思想,复杂度为logk(所求答案)。显然倍增要好很多。我讲讲倍增。
如果是暴力的话显然是从前往后一个一个枚举来计算。这里每次只往后移了一格,我们能不能一下子移很多格呢?
当然可以,我们可以用倍增的思想,第一次移1格,第二次移2格……如果再移就超过答案,就把移的格数除以2。如果最后移的格数是0,那么这一格就是答案
#include<cstdio>
#include<cctype>
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std; const int MAXN = + ;
int a[MAXN], s[MAXN], n, m, sum; void read(int& x)
{
int f = ; x = ; char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -; ch = getchar(); }
while(isdigit(ch)) { x = x * + ch - ''; ch = getchar(); }
x *= f;
} int main()
{
read(n); read(m);
_for(i, , n) read(a[i]), s[i] = s[i-] + a[i];
while(m--)
{
int T; read(T);
int k = , p = , sum = ; //k为当前在哪一格,p为下一步要移多少格,sum为已经走了的格的总和
while(p)
{
if(k + p <= n && sum + s[k + p] - s[k] <= T)
{
sum += s[k + p] - s[k];
k += p;
p <<= ;
}
else p >>= ;
}
printf("%d\n", k);
}
return ;
}
hihocoder#1384
发现倍增的套路和二分有点像。出题就出来判断区间是否合法上
这里值得一提的是可以把新加进入的数组sort一遍,然后和之前已经
有序的数组做一次归并,而不用从头再来sort
//这个程序WA,目前还不知道为什么
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cmath>
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;
typedef long long ll;
const int MAXN = 5e5 + 10;
int n, m, a[MAXN];
int b[MAXN], t[MAXN];
ll T;
inline void read(int& x)
{
int f = 1; x = 0; char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar(); }
while(isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); }
x *= f;
}
inline void readll(ll& x)
{
ll f = 1; x = 0; char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar(); }
while(isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); }
x *= f;
}
void merge_sort(int L, int R, int p)
{
_for(i, R + 1, R + p) b[i] = a[i];
sort(b + R + 1, b + R + p + 1);
int i = L, pos = L, j = R + 1;
while(i <= R || j <= R + p)
{
if(j > R + p || i <= R && a[i] < b[j]) t[pos++] = a[i++];
else t[pos++] = b[j++];
}
_for(i, L, R + p) a[i] = t[i];
}
bool check(int L, int R, int p)
{
merge_sort(L, R, p);
ll res = 0;
int l = L, r = R + p, tmp = m;
while(tmp--)
{
if(l >= r) break;
res += (a[r] - a[l]) * (a[r] - a[l]);
if(res > T) return false;
r--; l++;
}
return true;
}
int main()
{
int t; read(t);
while(t--)
{
read(n); read(m); readll(T);
_for(i, 1, n) read(a[i]);
int L = 1, R, ans = 0, p;
while(L <= n)
{
R = L; p = 1;
ans++;
while(p)
{
if(R + p <= n && check(L, R, p)) //
{
R += p;
p <<= 1;
}
else p >>= 1;
}
L = R + 1;
}
printf("%d\n", ans);
}
return 0;
}
RMQ算法模板 poj 3264(快速求区间最值,不支持修改)
#include<cstdio>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std;
const int MAXN = 8e4;
const int MAXM = 30;
int dmin[MAXN][MAXM], dmax[MAXN][MAXM], a[MAXN], n, q;
void RMQ_init()
{
_for(i, 1, n) dmin[i][0] = dmax[i][0] = a[i];
for(int j = 1; (1 << j) <= n; j++)
for(int i = 1; i + (1 << j) - 1 <= n; i++)
{
dmax[i][j] = max(dmax[i][j-1], dmax[i + (1 << (j-1))][j-1]);
dmin[i][j] = min(dmin[i][j-1], dmin[i + (1 << (j-1))][j-1]);
}
}
int RMQ_ans(int l, int r)
{
int k = 0;
while((1 << (k + 1)) <= r - l + 1) k++;
return max(dmax[l][k], dmax[r - (1 << k) + 1][k]) - min(dmin[l][k], dmin[r - (1 << k) + 1][k]);
}
int main()
{
scanf("%d%d", &n, &q);
_for(i, 1, n) scanf("%d", &a[i]);
RMQ_init();
while(q--)
{
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", RMQ_ans(l, r));
}
return 0;
}
倍增算法总结 ( 含RMQ模板)的更多相关文章
- LCA倍增算法的错误与模板
先上我原来的错误的代码 type node=^link; link=record num:int64; next:node; end; var fa:..,..] of int64; dep:..] ...
- LCA上的RMQ模板算法
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]
参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...
- LCA(最近公共祖先)之倍增算法
概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介 ...
- LCA倍增算法
LCA 算法是一个技巧性很强的算法. 十分感谢月老提供的模板. 这里我实现LCA是通过倍增,其实就是二进制优化. 任何一个数都可以有2的阶数实现 例如16可以由1 2 4 8组合得到 5可以由1 2 ...
- Poj 3264 Balanced Lineup RMQ模板
题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...
- 后缀数组的倍增算法(Prefix Doubling)
后缀数组的倍增算法(Prefix Doubling) 文本内容除特殊注明外,均在知识共享署名-非商业性使用-相同方式共享 3.0协议下提供,附加条款亦可能应用. 最近在自学习BWT算法(Burrows ...
- [置顶] 小白学习KM算法详细总结--附上模板题hdu2255
KM算法是基于匈牙利算法求最大或最小权值的完备匹配 关于KM不知道看了多久,每次都不能完全理解,今天花了很久的时间做个总结,归纳以及结合别人的总结给出自己的理解,希望自己以后来看能一目了然,也希望对刚 ...
- CodeForces #549 Div.2 ELynyrd Skynyrd 倍增算法
题目 这道题目实际上可以用动态规划来做. 对于每个区间,我们从右边边界,往左边走,如果能走n-1次,那说明以右边边界为起点存在一个题目中说的子链. 利用倍增算法,实际上倍增也是动态规划.f[i][j] ...
随机推荐
- Hive sql
1.DDL操作 1.1 建表 CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_ ...
- CentOS 7下搭建高可用集群
一 .安装集群软件 必须软件pcs,pacemaker,corosync,fence-agents-all,如果需要配置相关服务,也要安装对应的软件. 二.配置防火墙1.禁止防火墙和selinux# ...
- C# 日期格式
# DateTime日期格式化 在C#中DateTime是一个包含日期.时间的类型,此类型通过ToString()转换为字符串时,可根据传入给Tostring()的参数转换为多种字符串格式. 目录 1 ...
- 【codeforces 799A】Carrot Cakes
[题目链接]:http://codeforces.com/contest/799/problem/A [题意] 你有一个烤炉; 每t秒能同时烤出k个蛋糕; 你可以在第一个烤炉在烤的时候;同时花费d秒建 ...
- SSH框架整合截图总结(三)
联系人信息查询1 点击 联系人信息查询 超链接时候,到查询页面 (1)在查询页面中,选择客户,根据客户进行查询 下拉表框显示所有客户 可以根据所属的客户进行联系人查询 2 在查询页面中,输入值,提 ...
- Google Spanner (中文版)
温馨提示:本论文由厦门大学计算机系林子雨翻译自英文论文,转载请注明出处,仅用于学习交流,请勿用于商业用途. [本文翻译的原始出处:厦门大学计算机系数据库实验室网站林子雨老师的云数据库技术资料专区htt ...
- 0112centos上面l安装卸载mysq
http://www.centoscn.com/CentosServer/sql/2015/0409/5127.html常用命令cat /etc/issuerpm -qa | grep mysqlyu ...
- 使用jekyll配置一个自己的blog
使用coding.net上提供的pages服务来配置一个自己的站点 提示:下载这些软件,最好能FQ,有些链接是国外的,淘宝的ruby镜像已经不提供服务了 1. 安装Ruby 2. 安装Rubygems ...
- 产品经理---- idea good idea
想问题有不同的思想. 1.先去娶老婆再生娃. 我有啥,我能用这些做啥? [大概这就是泯然众人的思想吧] 2.先做衣服后长肉 我想要做个啥?然后我需要怎么做?怎么做的什么? 好的产品经理我认为是第二种. ...
- JAVA程序设计(11)-----面对对象0基础设计 麻将 创建麻将牌 然后洗牌 发牌~ 恩 就这样
zzzzZZZZ 1.開始还想贴图的 实在太懒了-- 这是一张麻将 package com.lovo; import java.awt.Graphics; import java.awt.Image; ...