2693: jzptab

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 1194  Solved: 455
[Submit][Status][Discuss]

Description

Input

一个正整数T表示数据组数

接下来T行 每行两个正整数 表示N、M

Output

T行 每行一个整数 表示第i组数据的结果

Sample Input

1

4 5

Sample Output

122
HINT
T <= 10000
N, M<=10000000

和上题一样,不过多组数据
利用了和bzoj2820类似的技巧D=di 改变求和指标,这样就可以把Sum提前,剩下的部分处理前缀和
 
如何处理前缀和:
积性函数的约数和也是积性函数,可以用线性筛
g[i]=约数和D*i*mu[i]
显然g[p]=p*(1-p)
g[i*p[j]] 当p[j]|i时  mu[ii]中ii带有p[j]的话就是0了不能计入,所以p[j]只能在剩下的一块里,也就是只有D变了,所以总的就是p[j]*g[i]
 
尝试了一下枚举倍数的方法,T了
 
总结:其实这两道题和gcd=k的个数两道题很像,都是第一题只要求一个,第二题要求多个,然后就要改写式子然后处理前缀和......
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e7+,MOD=;
inline int read() {
char c=getchar();
int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m;
bool notp[N];int p[N];
ll s[N],mu[N],g[N];
void sieve(){
mu[]=;
g[]=;
for(int i=;i<N;i++){
if(!notp[i]) p[++p[]]=i,mu[i]=-,g[i]=i-(ll)i*i;
for(int j=;j<=p[]&&i*p[j]<N;j++){
int t=i*p[j];
notp[t]=;
if(i%p[j]==){
mu[t]=;
g[t]=(g[i]*p[j])%MOD;
break;
}
mu[t]=-mu[i];
g[t]=(g[i]*g[p[j]])%MOD;
}
} for(int i=;i<N;i++) g[i]=(g[i]+g[i-])%MOD; }
inline ll S(ll x,ll y){
return ((x*(x+)/)%MOD)*((y*(y+)/)%MOD)%MOD;
}
int main(){
sieve();
int T=read();
while(T--){
n=read();
m=read();
if(n>m) swap(n,m);
ll ans=,r=;
for(ll D=;D<=n;D=r+){
r=min(n/(n/D),m/(m/D));
ans=(ans+S(n/D,m/D)*(g[r]-g[D-]))%MOD;
}
printf("%lld\n",(ans+MOD)%MOD);
}
}
 

BZOJ 2693: jzptab [莫比乌斯反演 线性筛]的更多相关文章

  1. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  2. BZOJ 2693: jzptab( 莫比乌斯反演 )

    速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...

  3. BZOJ 2693 jzptab ——莫比乌斯反演

    同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...

  4. BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法

    Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...

  5. BZOJ 2694: Lcm [莫比乌斯反演 线性筛]

    题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd( ...

  6. 【bzoj2694】Lcm 莫比乌斯反演+线性筛

    题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...

  7. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  8. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  9. 【BZOJ】2693: jzptab 莫比乌斯反演

    [题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...

随机推荐

  1. Android动画效果之初识Property Animation(属性动画)

    前言: 前面两篇介绍了Android的Tween Animation(补间动画) Android动画效果之Tween Animation(补间动画).Frame Animation(逐帧动画)Andr ...

  2. Bagging与随机森林算法原理小结

    在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...

  3. 基于tiny4412的Linux内核移植 ---- 調試方法

    作者信息 彭東林 郵箱: pengdonglin137@163.com 平臺 Linux-4.4.4 uboot使用的是友善自帶的(爲了支持uImage和設備樹做了稍許修改) 概述 這篇博客主要用於匯 ...

  4. SQL实用

    实用的SQL语句   行列互转 create table test(id int,name varchar(20),quarter int,profile int) insert into test  ...

  5. Asp.Net Core 项目实战之权限管理系统(5) 用户登录

    0 Asp.Net Core 项目实战之权限管理系统(0) 无中生有 1 Asp.Net Core 项目实战之权限管理系统(1) 使用AdminLTE搭建前端 2 Asp.Net Core 项目实战之 ...

  6. 前端开发:Javascript中的数组,常用方法解析

    前端开发:Javascript中的数组,常用方法解析 前言 Array是Javascript构成的一个重要的部分,它可以用来存储字符串.对象.函数.Number,它是非常强大的.因此深入了解Array ...

  7. Debug Databinding Issues in WPF

    DataBinding is one of the most powerful features in WPF. But because it resolves the bindings at run ...

  8. [Q&A] C1DataGrid 奇葩的 BeginNewRow() 方法

    一.前言 用户千千万,自然需求就千奇百怪都有,某天有人提了这样一个需求: 某个 C1DataGrid 在 ScrollViewer 的底部(使纵向滚动条显示出来),然后当该 C1DataGrid 增加 ...

  9. SimpleSSO:使用Microsoft.Owin.Security.OAuth搭建OAuth2.0授权服务端

    目录 前言 OAuth2.0简介 授权模式 (SimpleSSO示例) 使用Microsoft.Owin.Security.SimpleSSO模拟OpenID认证 通过authorization co ...

  10. PHP多图片上传实例demo

    upload.html <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http:/ ...