BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 1194 Solved: 455
[Submit][Status][Discuss]
Description
Input
一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M
Output
T行 每行一个整数 表示第i组数据的结果
Sample Input
1
Sample Output
HINT
T <= 10000
N, M<=10000000
和上题一样,不过多组数据
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e7+,MOD=;
inline int read() {
char c=getchar();
int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m;
bool notp[N];int p[N];
ll s[N],mu[N],g[N];
void sieve(){
mu[]=;
g[]=;
for(int i=;i<N;i++){
if(!notp[i]) p[++p[]]=i,mu[i]=-,g[i]=i-(ll)i*i;
for(int j=;j<=p[]&&i*p[j]<N;j++){
int t=i*p[j];
notp[t]=;
if(i%p[j]==){
mu[t]=;
g[t]=(g[i]*p[j])%MOD;
break;
}
mu[t]=-mu[i];
g[t]=(g[i]*g[p[j]])%MOD;
}
} for(int i=;i<N;i++) g[i]=(g[i]+g[i-])%MOD; }
inline ll S(ll x,ll y){
return ((x*(x+)/)%MOD)*((y*(y+)/)%MOD)%MOD;
}
int main(){
sieve();
int T=read();
while(T--){
n=read();
m=read();
if(n>m) swap(n,m);
ll ans=,r=;
for(ll D=;D<=n;D=r+){
r=min(n/(n/D),m/(m/D));
ans=(ans+S(n/D,m/D)*(g[r]-g[D-]))%MOD;
}
printf("%lld\n",(ans+MOD)%MOD);
}
}
BZOJ 2693: jzptab [莫比乌斯反演 线性筛]的更多相关文章
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- BZOJ 2693: jzptab( 莫比乌斯反演 )
速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...
- BZOJ 2693 jzptab ——莫比乌斯反演
同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...
- BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法
Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...
- BZOJ 2694: Lcm [莫比乌斯反演 线性筛]
题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd( ...
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- 【BZOJ】2693: jzptab 莫比乌斯反演
[题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...
随机推荐
- 前端学HTTP之网络基础
× 目录 [1]网络 [2]OSI [3]TCP/IP 前面的话 HTTP协议对于前端工程师是非常重要的.我们在浏览网站时,访问的每一个WEB页面都需要使用HTTP协议实现.如果不了解HTTP协议,就 ...
- Notepad2替代系统自带的记事本
事情是这样的,平时我经常把一些文字复制到记事本中编辑好了再复制到目标位置,可以在系统自带的记事本中替换删除一些内容,记事本小巧,占用很少的资源,我很喜欢:但今天复制的内容中有很多数字和一些我不想要的内 ...
- js实现StringBuffer
实现 function StringBuffer() { this.__strings__ = []; }; StringBuffer.prototype.Append = function (str ...
- Python(四)装饰器、迭代器&生成器、re正则表达式、字符串格式化
本章内容: 装饰器 迭代器 & 生成器 re 正则表达式 字符串格式化 装饰器 装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等.装饰器是解 ...
- [C#项目开源] MongoDB 可视化管理工具 (2011年10月-至今)
正文 该项目从2011年10月开始开发,知道现在已经有整整5年了.MongoDB也从一开始的大红大紫到现在趋于平淡. MongoCola这个工具在一开始定位的时候只是一个Windows版本的工具,期间 ...
- cin.ignore()函数的用法
cin.ignore(a,ch)方法是从输入流(cin)中提取字符,提取的字符被忽略(ignore),不被使用.每抛弃一个字符,它都要计数和比较字符:如果计数值达到a或者被抛弃的字符是ch,则cin. ...
- 一段良好的程序永远不应该发生panic异常
panic来自被调函数的信号,表示发生了某个已知的bug.一段良好的程序永远不应该发生panic异常 对于大部分程序而言,永远无法保证能够成功运行,因为错误原因往往超出程序员的控制范围.任何进行io操 ...
- Quartz —— 从 HelloWorld 开始
1.Quartz 是用来完成任务调度的. 2.Quartz 的三个核心概念:调度器.任务.触发器. (1)Job:通过实现该接口来定义需要执行的任务. public interface Job { / ...
- js获取页面url
设置或获取对象指定的文件名或路径. window.location.pathname例:http://localhost:8086/topic/index?topicId=361alert(windo ...
- CentOS7下安装Python的pip
root用户使用yum install -y python-pip 时会报如下错误: No package python-pip available Error:Nothing to do 解决方法如 ...