HBase Split
Region Split请求是在Region MemStore Flush之后被触发的:
boolean shouldCompact = region.flushcache(); // We just want to check the size
boolean shouldSplit = region.checkSplit() != null; if (shouldSplit) {
this.server.compactSplitThread.requestSplit(region);
} else if (shouldCompact) {
server.compactSplitThread.requestCompaction(region, getName());
} server.getMetrics().addFlush(region.getRecentFlushInfo());
Region Flush操作完成之后,会进行checkSplit的判断,如果返回值不为null(返回值为该Region的SplitPoint),表示该Region达到了进行Split的条件,发起相应的Split请求。
checkSplit方法定义如下:
/**
* Return the splitpoint. null indicates the region isn't splittable. If the
* splitpoint isn't explicitly specified, it will go over the stores to find
* the best splitpoint. Currently the criteria of best splitpoint is based
* on the size of the store.
*/
public byte[] checkSplit() {
// Can't split ROOT/META
if (this.regionInfo.isMetaTable()) {
if (shouldForceSplit()) {
LOG.warn("Cannot split root/meta regions in HBase 0.20 and above");
} return null;
} if (!splitPolicy.shouldSplit()) {
return null;
} byte[] ret = splitPolicy.getSplitPoint(); if (ret != null) {
try {
checkRow(ret, "calculated split");
} catch (IOException e) {
LOG.error("Ignoring invalid split", e); return null;
}
} return ret;
}
由上述代码可以看出,如果当前Region属于目录信息表(ROOT/META),则是不允许进行Split操作的,否则根据当前Region的RegionSplitPolicy实例判断是否需要进行Split,流程包含两步:
(1)该Region是否允许进行Split;
(2)该Region在允许进行Split的条件下,是否可以计算出相应的SplitPoint。
RegionSplitPolicy shouldSplit
如果没有在定义表结构时进行特殊的指定,RegionSplitPolicy默认为org.apache.hadoop.hbase.regionserver.IncreasingToUpperBoundRegionSplitPolicy的实例,配置项为hbase.regionserver.region.split.policy。
方法代码如下:
@Override
protected boolean shouldSplit() {
if (region.shouldForceSplit()) {
return true;
} boolean foundABigStore = false; // Get count of regions that have the same common table as this.region
int tableRegionsCount = getCountOfCommonTableRegions(); // Get size to check
long sizeToCheck = getSizeToCheck(tableRegionsCount); for (Store store : region.getStores().values()) {
// If any of the stores is unable to split (eg they contain
// reference files)
// then don't split
if ((!store.canSplit())) {
return false;
} // Mark if any store is big enough
long size = store.getSize(); if (size > sizeToCheck) {
LOG.debug("ShouldSplit because " + store.getColumnFamilyName()
+ " size=" + size + ", sizeToCheck=" + sizeToCheck
+ ", regionsWithCommonTable=" + tableRegionsCount); foundABigStore = true; break;
}
} return foundABigStore;
}
执行流程:
(1)如果当前Region被请求执行ForceSplit,则直接返回true;
(2)计算当前Region中的各个Store大小的上限值;
(3)循环判断当前Region中的某一Store大小是否超过上限值,如果存在这样的Store,则提前结束循环,返回true即可。
其中,进行大小判断的Region Store必须是可Split的,即该Store中不包含Reference类型的文件,如果某一Store中出现了Reference类型的文件,则表示该Region已经被Split过,不能再进行Split,此时,直接返回false即可。
重点讲述一下Region中各个Store大小的上限值的计算方法:
(1)假设当前Region所属的表为t,计算该Region所处于的RegionServer上包含表t的Online Region数目,并将结果保存至变量tableRegionsCount中;
// Get count of regions that have the same common table as this.region
int tableRegionsCount = getCountOfCommonTableRegions();
getCountOfCommonTableRegions方法代码如下:
/**
* @return Count of regions on this server that share the table this.region
* belongs to
*/
private int getCountOfCommonTableRegions() {
RegionServerServices rss = this.region.getRegionServerServices(); // Can be null in tests
if (rss == null) {
return 0;
} byte[] tablename = this.region.getTableDesc().getName(); int tableRegionsCount = 0; try {
List<HRegion> hri = rss.getOnlineRegions(tablename); tableRegionsCount = hri == null || hri.isEmpty() ? 0 : hri.size();
} catch (IOException e) {
LOG.debug("Failed getOnlineRegions " + Bytes.toString(tablename), e);
} return tableRegionsCount;
}
首先获取该Region所处于的RegionServer实例:
RegionServerServices rss = this.region.getRegionServerServices();
然后获取该Region所对应的表的名称:
byte[] tablename = this.region.getTableDesc().getName();
最后获取表tablename在rss上的Online Region的数目:
List<HRegion> hri = rss.getOnlineRegions(tablename);
(2)根据tableRegionsCount计算上限值:
// Get size to check
long sizeToCheck = getSizeToCheck(tableRegionsCount);
getSizeToCheck方法代码如下:
/**
* @return Region max size or
* <code>count of regions squared * flushsize, which ever is
* smaller; guard against there being zero regions on this server.
*/
long getSizeToCheck(final int tableRegionsCount) {
return tableRegionsCount == 0 ? getDesiredMaxFileSize() : Math.min(
getDesiredMaxFileSize(), this.flushSize
* (tableRegionsCount * tableRegionsCount));
}
计算过程根据tableRegionsCount的值分为两种情况:
(1)tableRegionsCount值为0时(可能发生么?),直接通过方法getDesiredMaxFileSize返回结果即可(getDesiredMaxFileSize的返回值可以在创建表时指定,如果创建表时没有特殊指定,则由配置项hbase.hregion.max.filesize决定,默认值为10737418240即10G);
(2)tableRegionsCount值不为0时,结果为getDesiredMaxFileSize()与this.flushSize * (tableRegionsCount * tableRegionsCount)两者之间的最小值,其中flushSize在创建表时指定,如果创建表时没有特殊指定,则由配置项hbase.hregion.memstore.flush.size决定,默认值为134217728即128M。
RegionSplitPolicy getSplitPoint
进行到这一步,表示该Region是允许进行Split的,下一步应该计算该Region的SplitPoint。
方法代码如下:
/**
* @return the key at which the region should be split, or null if it cannot
* be split. This will only be called if shouldSplit previously
* returned true.
*/
protected byte[] getSplitPoint() {
byte[] explicitSplitPoint = this.region.getExplicitSplitPoint();
if (explicitSplitPoint != null) {
return explicitSplitPoint;
} Map<byte[], Store> stores = region.getStores(); byte[] splitPointFromLargestStore = null; long largestStoreSize = 0; for (Store s : stores.values()) {
byte[] splitPoint = s.getSplitPoint(); long storeSize = s.getSize(); if (splitPoint != null && largestStoreSize < storeSize) {
splitPointFromLargestStore = splitPoint; largestStoreSize = storeSize;
}
} return splitPointFromLargestStore;
}
执行流程如下:
(1)如果请求ForceSplit时显示指定了SplitPoint,则直接将该值返回即可;
(2)循环处理该Region的Store,分别获取该Store的大小和SplitPoint,最后Region的SplitPoint为最大的那个Store的SplitPoint。
接下来的问题是如何计算Store的SplitPoint。
Store getSplitPoint
/**
* Determines if Store should be split
*
* @return byte[] if store should be split, null otherwise.
*/
public byte[] getSplitPoint() {
this.lock.readLock().lock(); try {
// sanity checks
if (this.storefiles.isEmpty()) {
return null;
} // Should already be enforced by the split policy!
assert !this.region.getRegionInfo().isMetaRegion(); // Not splitable if we find a reference store file present in the
// store.
long maxSize = 0L; StoreFile largestSf = null; for (StoreFile sf : storefiles) {
if (sf.isReference()) {
// Should already be enforced since we return false in this
// case
assert false : "getSplitPoint() called on a region that can't split!"; return null;
} StoreFile.Reader r = sf.getReader(); if (r == null) {
LOG.warn("Storefile " + sf + " Reader is null"); continue;
} long size = r.length(); if (size > maxSize) {
// This is the largest one so far
maxSize = size; largestSf = sf;
}
} StoreFile.Reader r = largestSf.getReader(); if (r == null) {
LOG.warn("Storefile " + largestSf + " Reader is null"); return null;
} // Get first, last, and mid keys. Midkey is the key that starts
// block
// in middle of hfile. Has column and timestamp. Need to return just
// the row we want to split on as midkey.
byte[] midkey = r.midkey(); if (midkey != null) {
KeyValue mk = KeyValue.createKeyValueFromKey(midkey, 0,
midkey.length); byte[] fk = r.getFirstKey();
KeyValue firstKey = KeyValue.createKeyValueFromKey(fk, 0,
fk.length); byte[] lk = r.getLastKey();
KeyValue lastKey = KeyValue.createKeyValueFromKey(lk, 0,
lk.length); // if the midkey is the same as the first or last keys, then we
// cannot
// (ever) split this region.
if (this.comparator.compareRows(mk, firstKey) == 0
|| this.comparator.compareRows(mk, lastKey) == 0) {
if (LOG.isDebugEnabled()) {
LOG.debug("cannot split because midkey is the same as first or "
+ "last row");
} return null;
} return mk.getRow();
}
} catch (IOException e) {
LOG.warn("Failed getting store size for " + this, e);
} finally {
this.lock.readLock().unlock();
} return null;
}
执行流程
(1)选择Store StoreFiles中的最大的那个StoreFile largestSf;
long maxSize = 0L;
StoreFile largestSf = null;
for (StoreFile sf : storefiles) {
if (sf.isReference()) {
// Should already be enforced since we return false in this
// case
assert false : "getSplitPoint() called on a region that can't split!";
return null;
}
StoreFile.Reader r = sf.getReader();
if (r == null) {
LOG.warn("Storefile " + sf + " Reader is null");
continue;
}
long size = r.length();
if (size > maxSize) {
// This is the largest one so far
maxSize = size;
largestSf = sf;
}
}
(2)获取largestSf的MidKey、FirstKey、LastKey,如果MidKey与FirstKey相等或者MidKey与LastKey相等,则返回null(为什么?);否则返回MidKey。
// Get first, last, and mid keys. Midkey is the key that starts
// block
// in middle of hfile. Has column and timestamp. Need to return just
// the row we want to split on as midkey.
byte[] midkey = r.midkey(); if (midkey != null) {
KeyValue mk = KeyValue.createKeyValueFromKey(midkey, 0,
midkey.length); byte[] fk = r.getFirstKey();
KeyValue firstKey = KeyValue.createKeyValueFromKey(fk, 0,
fk.length); byte[] lk = r.getLastKey();
KeyValue lastKey = KeyValue.createKeyValueFromKey(lk, 0,
lk.length); // if the midkey is the same as the first or last keys, then we
// cannot
// (ever) split this region.
if (this.comparator.compareRows(mk, firstKey) == 0
|| this.comparator.compareRows(mk, lastKey) == 0) {
if (LOG.isDebugEnabled()) {
LOG.debug("cannot split because midkey is the same as first or "
+ "last row");
} return null;
} return mk.getRow();
}
StoreFile是由多个Block组成的(这里的Block不同于HDFS的Block),每个Block的第一个RowKey会被存储到StoreFile中的特殊位置中,因此,这里的MidKey、FirstKey、LastKey指的就是StoreFile中MidBlock、FirstBlock、LastBlock各自的第一个RowKey。
Region Split是以Row作为最小切分单位的,即同一行的数据会完整的出现在某一Region中,如果MidKey与FirstKey相等或者MidKey与LastKey相等,则表示如果进行切分则会出现某Region中的RowKey是完全一样的,即该Region中仅包含一个行的数据,这种情况出现中HBase中是不合理的,因此不允许MidKey与FirstKey相等或者MidKey与LastKey相等时进行Split。
综上所述,如果某一Region满足Split的条件且可以计算出SplitPoint,则可以发起Split请求:
this.server.compactSplitThread.requestSplit(region);
HBase Split的更多相关文章
- Hbase split的三种方式和split的过程
在Hbase中split是一个很重要的功能,Hbase是通过把数据分配到一定数量的region来达到负载均衡的.一个table会被分配到一个或多个region中,这些region会被分配到一个或者多个 ...
- Hbase split的过程以及解发条件
一.Split触发条件 1. 有任一一个Hfile的大小超过默认值10G时,都会进行split 2. 达到这个值不在拆分,默认为int_max,不进行拆分 3.compact ...
- HBase内部操作日志说明
版本:0.94-cdh4.2.1 1. Split Region [regionserver60020-splits-1397585864985] INFO org.apache.hadoop.hba ...
- 为什么不建议在hbase中使用过多的列簇
我们知道,hbase表可以设置一个至多个列簇(column families),但是为什么说越少的列簇越好呢? 官网原文: HBase currently does not do well with ...
- HBASE学习笔记(一)
一.数据库OLAP和OLTP简单的介绍比较 1.OLTP:on-line transaction processing在线事务处理,应用在传统关系型数据库比较多,执行日常基本的事务处理,比如数据库记录 ...
- HBase原理 – 分布式系统中snapshot是怎么玩的?(转载)
snapshot(快照)基础原理 snapshot是很多存储系统和数据库系统都支持的功能.一个snapshot是一个全部文件系统.或者某个目录在某一时刻的镜像.实现数据文件镜像最简单粗暴的方式是加锁拷 ...
- HBASE-使用问题-split region
问题描述: HBASE表的管理以REGION分区为核心,通常面临如下几个问题: 1) 数据如何存储到指定的region分区,即rowkey设计,region splitkey设计 2)设计的split ...
- Apache HBase MTTR 优化实践
HBase介绍 HBase是Hadoop Database的简称,是建立在Hadoop文件系统之上的分布式面向列的数据库,它具有高可靠.高性能.面向列和可伸缩的特性,提供快速随机访问海量数据能力. H ...
- HBase原理深入
HBase 读写数据流程 Hbase 读数据流程 首先从 zk 找到 meta 表的 region 位置,然后读取 meta 表中的数据,meta 表中存储了用户表的 region 信息 根据要查询的 ...
随机推荐
- padding与margin的差别
之前一直没有搞懂android:padding和android:layout_margin的差别,事实上概念非常easy,padding是站在父view的角度描写叙述问题,它规定它里面的内容必须与这个 ...
- Android(java)学习笔记235:多媒体之计算机图形表示方式
1.多媒体 很多媒体:文字(TextView,简单不讲),图片,声音,视频等等. 2.图片 计算机如何表示图片的? (1)bmp 高质量保存 256色位图:图片中的每个像素点可以有256种颜 ...
- servlet 配置到服务器
最近写了个安卓项目,服务端用的servlet.因为第一次写java项目,写完如何发布不是太清除,于是把这回经理写出来,一来做个记录,二来也给和我同样经历的朋友一点启示. 首先配置你的java主机和你的 ...
- prim 堆优化+ kruskal 按秩优化
#include<iostream> #include<cstdio> #include<cstring> #include<queue> #defin ...
- ASP.NET-FineUI开发实践-16(二)
实现那还差点,在事件参数里我传了一个boolall选中状态参数,这个参数由前台给的,RowSelect 传的是index 行号,就是改这,通过$符号来分开的, if (commandArgs.Leng ...
- 使用<input>标签做了两个按钮, 按钮之间间距如何去掉
遇到的问题: 使用<input>标签做了两个按钮, 按钮之间有个间距不知道怎么去掉. 如下图: 问题解决: <input>是内联块状元素(inline-block); 内联元素 ...
- ZOJ3527
题意:给你一个有向图,一共N个顶点,且每个顶点只有一个前驱或后继,在顶点上建立圣地,那么就可以获得一个信仰值,如果在这个顶点的后继节点上也建立圣地,那么将改变一定的信仰值,求解能获取的最大信仰值. 思 ...
- asp.net使用dorpdownlist绑定无限级分类
/// <summary> /// 绑定父项分类 /// </summary> protected void DDLBindClass( ...
- 四大跨平台的APP分析
转载:http://blog.csdn.net/kenkao/article/details/50678269
- python自学笔记
python自学笔记 python自学笔记 1.输出 2.输入 3.零碎 4.数据结构 4.1 list 类比于java中的数组 4.2 tuple 元祖 5.条件判断和循环 5.1 条件判断 5.2 ...